-
随着国内经济的快速发展,石化企业的产业范围和规模日益增长,石化企业产生废水的数量及种类越来越多[1-3]。同时,随着石油化学工业污染物排放标准(GB 31571-2015)在2017年7月1日的实施,国内石化企业的废水处理面临巨大的挑战[4-5]。目前,石化废水的处理主要以二级生物处理为核心,出水可生化性差、含盐量高、难以资源化回收利用,而直接外排又会造成水环境污染等问题,因此,对二级处理出水深度处理后进行资源化回收利用或者达标排放,是当前石化企业的迫切需求[5-6]。
近年来,电吸附技术在废水处理、污水回用等领域备受关注[7-8]。庞维亮等[9]在对活性炭进行改性研究中发现,电吸附技术吸附效率受到电极材料的孔径分布和表面官能团的种类及数量的影响。姚迪等[10]考察了KOH添加量对煤基电极材料结构和性能的影响,发现KOH添加量的增加使得电极材料微孔和中孔数量及表面含氧官能团增加,有效促进了电吸附技术对氰化废水的处理效果。李虹雨等[11]在研究椰壳活性炭对水中苯酚的吸附过程中,发现椰壳活性炭经氢氧化钠改性后,平均孔容增大,表面碱性基团增加,同时提高了对苯酚的吸附效果。
活性炭电极材料的表面形貌、化学结构会影响其电吸附效率。有研究[10-12]表明,采用NaOH、KOH及氨水等改性剂对活性炭进行改性会可提高活性炭电吸附效率。但是,现阶段对于活性炭电极材料的改性研究多集中在不同改性方法及改性剂的不同改性条件对单一污染物电吸附处理效率的影响上,对于改性后活性炭电吸附处理水质状况较为复杂的水体中各污染物指标的去除规律及去除机理等方面的研究则相对较少[9-11]。本研究以NaOH、KOH及氨水为改性剂,对活性炭纤维(ACF)电极材料进行改性,观察改性前后ACF电极材料对RO浓水各污染物指标的去除规律;同时,结合SEM、FT-IR表征分析与电吸附除盐吸附动力学方程拟合结果,探究了经碱改性的ACF电吸附除盐机理。
碱改性活性炭纤维电吸附处理RO浓水效果及除盐动力学特性
Electrosorption effect and desalination kinetic characteristics of reverse osmosis concentrated water with alkaline modified activated carbon fiber electrode
-
摘要: 针对电吸附技术在反渗透浓水回收利用过程中的吸附效率问题,通过NaOH、KOH、氨水对ACF电极材料进行浸渍改性,采用SEM观察、傅里叶变换红外光谱图分析的方法对改性前后ACF进行了表征;研究了改性前后ACF对反渗透浓水的去除效果和除盐动力学特性;探讨了碱改性前后ACF处理反渗透浓水的除盐机理。结果表明:随着氨水改性ACF比表面积的增加,表面碱性基团增加、酸性基团减少;ACF理化特征的变化与改性剂溶液的酸碱性有关;氨水改性ACF对反渗透浓水中电导率、氨氮、COD均有很好的降低或去除效果,而NaOH改性ACF对UV254有很好的去除效果;碱改性ACF处理反渗透浓水除盐过程更符合Elovich动力学方程;碱改性ACF电吸附处理反渗透浓水时,对各污染物指标表现出选择性,且与未改性ACF相比,具有更好的降低或去除效果,同时,碱改性ACF电吸附除盐过程是以物理吸附和化学吸附共存的多相吸附过程,也会存在离子交换作用。Abstract: In order to solve the problem of electrosorption efficiency in recovery and utilization of reverse osmosis concentrated water (ROCW), activated carbon fiber (ACF) electrode material was impregnated and modified by NaOH, KOH, and ammonia. SEM and FT-IR were used to characterize ACF before and after modification, and the removal effect, desalination kinetics and mechanism of ROCW by pristine and alkali modified ACF were discussed. The results showed that ammonia modified ACF had increased specific surface area and surface alkaline groups, decreased acidic groups, which corresponded to the acidity and alkalinity of the modifier solution. Ammonia modified ACF showed better removal of conductivity, ammonia nitrogen and COD, while NaOH modified ACF showed better UV254 removal. The ROCW desalination process of alkaline modified ACF could be better described by Elovich kinetic model, and presented selectivity and better removal efficiency for pollutants than pristine ACF. The adsorption process of alkaline modified ACF belongs to physical adsorption, chemical adsorption, and ion exchange.
-
Key words:
- electrosorption /
- ACF /
- alkali modification /
- ROCW /
- desalination /
- adsorption kinetics
-
表 1 活性炭纤维基本理化性质
Table 1. Basic physiochemical properties of activated carbon fiber
BET比表面积/(m2·g−1) 厚度/mm 孔径分布/% 孔容/(cm3·g−1) 灰分/% <1 nm 1~2 nm 2~5 nm >5 nm 1 500 2.00 83~84 6~7 6~7 4~5 0.9~1.28 2~3 表 2 碱改性前后ACF电吸附处理RO浓水除盐过程吸附动力学方程拟合结果
Table 2. Adsorption kinetic models of ROCW desalination process by electro-sorption treatment with ACF electrode before and after alkali modification
ACF样品 准一级动力学方程 准二级动力学方程 Elovich动力学方程 K1 R2 K2 K2qe2 R2 a b R2 未改性ACF 0.046 2 0.846 3 0.001 5 0.141 0 0.888 2 −0.666 1 1.969 9 0.922 1 ACF-NaOH 0.053 9 0.921 3 0.007 1 0.100 7 0.918 2 −0.761 4 2.476 0 0.902 2 ACF-KOH 0.059 3 0.874 7 0.015 3 0.082 2 0.896 1 −0.668 1 2.672 4 0.915 2 ACF-NH3 0.056 4 0.873 2 0.181 9 0.087 3 0.890 7 −0.185 5 2.539 9 0.947 4 -
[1] 李聪. 石油化工废水处理技术研究[J]. 环境与发展, 2018, 30(8): 79-80. [2] 张攀, 尤朝阳, 秦海燕, 等. MBR深度处理石化含油废水研究进展[J]. 水处理技术, 2016, 42(5): 5-7. [3] 解宏端, 王玲, 邢文东, 等. 石化工业废水处理技术与工艺优化[J]. 科技视界, 2015, 15(29): 29-34. doi: 10.3969/j.issn.2095-2457.2015.29.015 [4] 徐海波, 孙健, 程鑫, 等. 石化废水深度处理回用的应用研究[J]. 工业水处理, 2019, 39(1): 110-112. doi: 10.11894/1005-829x.2019.39(1).110 [5] 丁鹏元, 党伟, 滕艳, 等. 石化废水深度处理技术的研究进展[J]. 科学技术与工程, 2019, 19(7): 7-14. [6] 张国珍, 李娜, 武福平, 等. 电吸附法处理炼化反渗透浓水脱盐研究[J]. 水处理技术, 2012, 38(8): 88-91. doi: 10.3969/j.issn.1000-3770.2012.08.024 [7] 陈明燕, 蓝大蔚, 刘宇程. 高含盐废水脱盐处理技术研究进展[J]. 化工环保, 2018, 38(1): 19-24. doi: 10.3969/j.issn.1006-1878.2018.01.004 [8] 曹珊珊, 吝珊珊, 蒋雪, 等. 电吸附技术在水处理领域的应用与研究进展[J]. 应用化工, 2016, 45(9): 1767-1770. [9] 庞维亮, 胡柏松, 程丹丹, 等. 酸、碱改性活性炭对甲醇、甲苯吸附性能[J]. 化学工业与工程, 2018, 35(6): 48-53. [10] 姚迪, 宋永辉, 张珊, 等. KOH添加量对煤基电极材料结构与性能的影响[J]. 煤炭转化, 2017, 40(6): 41-47. doi: 10.3969/j.issn.1004-4248.2017.06.007 [11] 李虹雨, 王可, 邢璇, 等. 响应曲面法优化碱改性活性炭吸附水中苯酚研究[J]. 工业水处理, 2018, 38(4): 25-28. doi: 10.11894/1005-829x.2018.38(4).025 [12] 陈涵. 氨水改性活性炭及其性能的研究[J]. 福建林业科技, 2012, 39(4): 12-15. doi: 10.3969/j.issn.1002-7351.2012.04.04 [13] 刘晓敏. 活性炭孔结构与正丁烷吸附性能的关系及吸附动力学研究[D]. 北京: 中国林业科学研究, 2012. [14] 刘桂芳. 表面改性活性炭吸附酚类内分泌干扰物的性能与机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2008. [15] 汪昆平, 徐乾前. 几种不同处理方法对活性炭表面化学性质的影响[J]. 环境工程学报, 2012, 6(2): 373-380. [16] 梁霞, 王学江. 活性炭改性方法及其在水处理中的应用[J]. 水处理技术, 2011, 37(8): 1-6. [17] 常兴涛, 岳建芝, 贾洋洋, 等. 锯末颗粒吸附去除低质量浓度氨氮废水的研究[J]. 河南农业大学学报, 2018, 52(4): 582-586. [18] 程琼. 玉米秸秆活性炭的改性及处理对苯二酚废水的研究[D]. 太原: 中北大学, 2016. [19] 周贵忠, 王兆丰, 王绚, 等. 石墨-活性炭纤维复合电极电吸附处理含盐废水的研究[J]. 环境科学, 2014, 35(5): 1832-1837. [20] 崔罄心, 谢海燕, 肖乐, 等. 电吸附对水中盐类、氨氮、COD的去除效果分析[J]. 环境工程学报, 2013, 7(12): 4805-4810. [21] 陈玉莲. 活性炭的改性及其对甲苯和丙酮的吸附性能研究[D]. 上海: 华东理工大学, 2015. [22] 黄镇, 马正飞, 刘晓勤. 活性炭孔结构的混合碱改性[J]. 南京工业大学学报(自然科学版), 2012, 34(3): 51-55. doi: 10.3969/j.issn.1671-7627.2012.03.010 [23] YIN C Y, AROUA M K, ASHRI W M, et al. Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions[J]. Separation and Purification Technology, 2007, 52(3): 403-415. doi: 10.1016/j.seppur.2006.06.009 [24] 刘守新, 陈曦, 张显权. 活性炭孔结构和表面化学性质对吸附硝基苯的影响[J]. 环境科学, 2008, 29(5): 1192-1196. doi: 10.3321/j.issn:0250-3301.2008.05.007 [25] 孙新元. 表面改性竹炭对微污染水中有机物的吸附[D]. 南京: 南京林业大学, 2010. [26] 周岩梅, 张琼, 刁晓华, 等. 硝基苯和西维因在活性炭上的吸附效果及动力学研究[J]. 中国环境科学, 2010, 30(9): 1177-1182. [27] 李娜, 张国珍, 杨仕超, 等. 活性炭纤维电吸附处理含盐溶液吸附特性研究[J]. 工业水处理, 2013, 33(8): 48-51. doi: 10.3969/j.issn.1005-829X.2013.08.013 [28] ZOU W H, BAI H J, GAO S P. Competitive adsorption of neutral red and Cu2+ onto pyrolytic char: Isotherm and kinetic study[J]. Journal of Chemical & Engineering Data, 2012, 57(10): 2792-2801. [29] 谭珍珍, 张学杨, 骆俊鹏, 等. 小麦秸秆生物炭对四环素的吸附特性研究[J]. 水处理技术, 2019, 45(2): 32-38.