Loading [MathJax]/jax/output/HTML-CSS/jax.js

碳源强化下的硫自养/异养反硝化协同作用

王巧茹, 史旋, 宋伟, 张小磊, 李继. 碳源强化下的硫自养/异养反硝化协同作用[J]. 环境工程学报, 2019, 13(11): 2593-2600. doi: 10.12030/j.cjee.201812042
引用本文: 王巧茹, 史旋, 宋伟, 张小磊, 李继. 碳源强化下的硫自养/异养反硝化协同作用[J]. 环境工程学报, 2019, 13(11): 2593-2600. doi: 10.12030/j.cjee.201812042
WANG Qiaoru, SHI Xuan, SONG Wei, ZHANG Xiaolei, LI Ji. Synergistic analysis of sulfur autotrophic/heterotrophic denitrification under carbon source enhancement[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2593-2600. doi: 10.12030/j.cjee.201812042
Citation: WANG Qiaoru, SHI Xuan, SONG Wei, ZHANG Xiaolei, LI Ji. Synergistic analysis of sulfur autotrophic/heterotrophic denitrification under carbon source enhancement[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2593-2600. doi: 10.12030/j.cjee.201812042

碳源强化下的硫自养/异养反硝化协同作用

    作者简介: 王巧茹(1994—),女,硕士研究生。研究方向:水污染控制。E-mail:1152613092@qq.com
    通讯作者: 李继(1973—),男,博士,教授。研究方向:城市污水深度除磷脱氮等。E-mail:liji99@foxmail.com
  • 中图分类号: X522

Synergistic analysis of sulfur autotrophic/heterotrophic denitrification under carbon source enhancement

    Corresponding author: LI Ji, liji99@foxmail.com
  • 摘要: 为强化硫自养反硝化过程,通过向连续稳定运行的硫自养反硝化反应器内投加少量碳源以进行强化,乙酸钠投加量分别为5.99、11.98、23.96 mg·L−1。分析投加前后反应器内硝氮、COD、硫酸根和耗碱量的变化;研究了碳源强化下硫自养反硝化运行效能及反应机理。结果表明,投加少量碳源可增强自养反硝化过程硝氮的去除效果;在3种碳源投加量条件下,COD的利用率均大于85%,但硫酸盐生成量并未减少;在5.99 mg·L−1碳源投加量下,系统实际耗碱量大于以硫酸根和COD计的理论耗碱量,而在11.98 mg·L−1和23.96 mg·L−1投加量下,实际耗碱量均介于2种理论值之间。在投加少量碳源后,自养反硝化脱氮效果明显提高,异养反硝化趋势随着碳源投加量的增加而增加。
  • 近年来,我国城镇居民用水量不断增大,给水厂自来水产量也随之提高[1]。在自来水生产的同时,会产生大量的污泥,这部分污泥源于生产工艺中的沉淀池排泥水和滤池反冲洗水,主要为原水中的无机颗粒、有机物以及净水过程中投加的混凝剂[3]。其产量约占自来水总生产水量的4%~7%,为避免资源浪费,应设法将其回收利用[2-4]

    化学调理脱水是污泥脱水常用的方法[5]。常用的化学调理剂有PAM等有机高分子调理剂和铁系、铝系等无机调理剂[6]。PAM在较少的投加量下便可达到较理想的效果,如给水厂中常用阳离子PAM来对污泥进行调理,但其具有轻微毒性,泥水分离后的水不能回用,会对给水厂造成较大的损失。铁系混凝剂絮体形成快,但本身不稳定,且投加到水体中存在色度问题[7-8]。对于铝系混凝剂而言,由于铝形态的不同,其絮凝效果和机理也相应不同[9]。羟基铝盐絮凝剂的形态可分为Ala、Alb、Alc。Ala为低聚态铝,如单体铝AlCl3;Alb为中聚态铝,如Al13(分子式为[AlO4Al12(OH)24(H2O)12]7+);Alc为高聚态铝,如Al30。相对于单体铝来讲,聚合铝具有投加量少、污泥产生量少、电中和能力高、对pH和温度有更高的适应能力等优点[10]。Al13是铝离子水解过程的中间产物,是一种高电荷的纳米粒子。与其他混凝剂相比,Al13电中和能力更强,其在混凝、除氟和污泥调理等方面均有应用[11]。刘沛[8]和CAO等[9]分别将AlCl3和Al13应用于市政污泥脱水,发现经2者调理后的污泥脱水性能均有提高,而且Al13的效果更为显著。

    本研究采用无机盐调理剂AlCl3与自制Al13溶液对给水厂污泥进行调理,探究不同的药剂投加量对毛细脱水时间和污泥比阻的影响,并分析污泥调理过程中絮体粒径及形态的变化,从而得出2种调理剂形成的絮体特征;最后,结,2种药剂对有机物的去除率、调理后污泥上清液的余铝含量,比较其实际应用潜力。

    本研究所用污泥取自北京市某给水厂污泥浓缩池,该水厂以南水北调南干渠原水为水源,日产水量50×104 t。污泥基本性质见表1

    表 1  污泥基本性质
    Table 1.  Basic properties of sludge
    含水率/%有机质/%pHCST/sd(0.5)/μmSRF×1013/(m·kg−1)
    98.530.9777.551.131.63
      注:d(0.5)表示污泥中体积累积百分比为50%时颗粒的最大直径。
     | Show Table
    DownLoad: CSV

    六水合氯化铝(AlCl3·6H2O)、氢氧化钠(NaOH)、硫酸钠(Na2SO4)、氯化钡(BaCl2)均为分析纯;铝十三溶液(Al13,Al含量9.6 g·L−1)于实验室采用慢速滴碱法自制[12]。经Ferron比色法[9]检测,AlCl3和Al13溶液的Ala、Alb、Alc含量分别为95.32%、3.91%、0.77%和3.44%、93.96%、2.60%。

    调理方法。烧杯搅拌实验在六联搅拌器上进行,6个烧杯中分别倒入500 mL污泥,AlCl3的投加量(以Al含量计)为0.300、0.600、0.800、0.900、1.000、1.200 g·L−1;Al13投加量(以Al含量计)分别为0.024、0.096、0.192、0.288、0.336、0.360 g·L−1。搅拌器程序设定为:250 r·min−1快搅30 s,加药后200 r·min−1搅拌1 min,再以40 r·min−1慢搅10 min。

    毛细吸水时间(CST)由CST测定仪(RTC-304B,英国Triton公司)直接测定;污泥比阻(SRF)在压力为0.6 MPa下将一定量污泥倒入布氏漏斗中抽滤测定[14];含水率和有机质使用电热恒温干燥箱(DHG-9146A,北京天林恒泰科技有限公司)和箱式电阻炉(SX2-2 5-10TP,上海一恒科学仪器有限公司)测定[13]

    污泥上清液有机物的测定。参考NIU等[14]分离EPS的方法分步分离有机物,用荧光分光光度计(F-7000,日立公司)测定三维荧光谱图,采用150 W氙灯为激发光源,激发波长(Ex)200~400 nm,发射波长(Em)220~550 nm,狭缝宽度5 nm。DOC由总有机碳测定仪(岛津,岛津公司)测定。

    污泥上清液余铝的测定。调理后的污泥上清液过0.45 μm膜,稀释一定倍数用电感耦合等离子光谱仪(9800,岛津公司)测定。

    絮体粒径和分形维数的动态变化用马尔文激光粒度分析仪(Mastersizer 2000,马尔文公司)测定。混凝程序:A段快搅阶段,250 r·min−1快搅30 s,加AlCl3或Al13后200 r·min−1搅拌1 min;B段慢搅阶段,40 r·min−1慢搅15 min;C段破碎阶段,250 r·min−1快搅1 min破碎絮体;D段恢复阶段,40 r·min−1慢搅15 min使絮体再生成,参考SUN等[15]的方法计算分形维数。

    污泥絮体微观结构用场发射扫描电子显微镜(SU-8020,日立公司)观察。

    图1为经不同浓度Al13和AlCl3调理后污泥的CST和SRF。由图1(a)可知,随着Al13投加量的逐渐增加,污泥CST以较快的速度下降,在投加量为0.336 g·L−1时,CST从79.1 s减小到33.1 s,再继续增加投加量,CST反而上升;相比之下,随着AlCl3投加量的逐渐增加,CST下降速度较为缓慢,当其降至最小值34.8 s时,所对应的最佳投加量为0.800 g·L−1,继续增加投加量,CST缓慢上升。由图1(b)可知,Al13投加量为0.024和0.096 g·L−1时,SRF改善效果不明显,继续增加到0.336 g·L−1时,SRF改善效果最佳,为4.98×1012 m·kg−1,继续增加投加量,SRF增大,污泥脱水效果变差;AlCl3投加量为0.300 g·L−1时,SRF达到6.53×1012 m·kg−1,继续增加投加量至0.600、0.800、0.900 g·L−1,SRF维持在5.50×1012 m·kg−1左右,最小值为5.45×1012 m·kg−1,再继续增加投加量,污泥脱水效果变差。在最佳投加量的基础上继续增加投加量,CST和SRF效果都变差,这是因为调理剂投加过多,会引起颗粒复稳,脱水性能将变差[16]

    图 1  不同浓度Al13和AlCl3调理后的污泥的CST和SRF
    Figure 1.  CST and SRF of sludge treated with different concentrations of Al13 and AlCl3

    给水厂污泥主要成分为原水中的无机颗粒、有机物以及净水工艺中投加的混凝剂[17]。污泥中水分分为自由水、毛细结合水、表面吸附水和内部结合水[18]。与污水厂污泥不同,给水厂污泥微生物含量较少,内部结合水的含量不足以影响污泥脱水效能,因此在本研究中可忽略。有机物相对于无机颗粒更易于与水分结合,其存在状态在给水厂污泥中有3种:有机物单独存在、有机物吸附在无机颗粒上、有机物被净水过程中投加的混凝剂包裹。经过Al13和AlCl3调理后,有机物与调理剂结合,结合在有机物上的水分子脱出。

    图2是原泥及AlCl3、Al13最佳投加量调理后的污泥上清液有机物三维荧光图,原泥游离的有机物中主要呈现2个峰:Ex/Em 265-290 nm/320-375 nm、252-272 nm/430-440 nm,分别为微生物代谢产物峰和腐殖酸峰[9]。原泥和Al13、AlCl3调理过的污泥上清液各区域的荧光强度按照游离的有机物、吸附在无机颗粒的有机物、被混凝剂包裹的有机物的顺序依次减小,这说明有机物含量逐渐降低。Al13调理过的污泥游离有机物的荧光强度低于AlCl3,而混凝剂包裹的有机物荧光强度略高于AlCl3,因此Al13对游离有机物去除率相对较高,对混凝剂包裹的有机物去除率相对较低。有研究表明,污泥脱水性能与蛋白质含量相关[19]。蛋白质是污泥絮体的主要组成部分[20],其水化层会包围水相中的水分,使这部分水不易排出[21]。三维荧光图谱中Ex/Em 200-250 nm/280-380 nm为蛋白质区域[9],由图2(a)图2(d)图2(g)可知,Al13调理后的污泥上清液在蛋白质区域的荧光强度相对原泥明显减少,而AlCl3变化较小,因此Al13对蛋白质的去除效果优于AlCl3。该结果验证了污泥比阻实验中,Al13调理后的污泥易脱水的结论。

    图 2  原泥以及Al13和AlCl3最佳投加量调理后污泥上清液的三维荧光图谱
    Figure 2.  3D-EEM spectra of sludge supernatant about raw sludge and conditioned sludge using Al13、AlCl3

    图3为原泥和Al13、AlCl3调理过的污泥上清液不同层次有机物的DOC浓度(以总悬浮物(TSS)计)。图中3种污泥上清液的浓度按照游离的有机物、吸附在无机颗粒上的有机物、被混凝剂包裹的有机物的顺序减少,与三维荧光谱图中的趋势相同。经Al13和AlCl3调理过后的污泥各组分DOC浓度均有不同程度降低。原泥和Al13、AlCl3调理后的污泥游离有机物DOC浓度分别为2.16和1.03、2.15 mg·g−1,Al13调理过后的污泥游离有机物DOC浓度比原泥降低了1.13 mg·g−1,而AlCl3调理过后的污泥游离有机物DOC浓度仅比原泥降低了0.01 mg·g−1,因此Al13调理过后的污泥更易脱水。

    图 3  原泥和Al13、AlCl3调理后的污泥不同上清液的DOC值
    Figure 3.  DOC content of raw sludge and conditioned sludge using Al13、AlCl3

    图4是在AlCl3和Al13最佳投加量时,污泥随时间变化的絮体粒径(d(0.5))和分形维数。原泥粒径为52.42 μm,快搅30 s后加入Al13和AlCl3,絮体粒径均有所增长,在快搅阶段投加Al13的污泥形成的絮体粒径平均为57.29 μm,大于加入AlCl3的54.42 μm;慢搅阶段加入AlCl3的絮体粒径增长较快,最大能够增长到126.83 μm,稳定后平均粒径为110.47 μm,而加入Al13的污泥絮体大小则较稳定,一直保持在82.00 μm左右,稳定后平均粒径为81.70 μm;加入AlCl3和Al13的污泥絮体破碎阶段的粒径分别为88.83和69.96 μm;AlCl3在破碎后再生成的絮体稳定后平均粒径为137.39 μm,大于破碎前的粒径,Al13为78.36 μm。AlCl3和Al13的强度因子分别为80.41%和85.63%,恢复因子分别为224.40%和71.79%。强度因子越高,絮体抗剪切能力越强,恢复因子越高,絮体破坏后越容易重新团聚成絮体,因此Al13形成的污泥絮体抗剪切能力更强,AlCl3形成的絮体受到破坏后更容易恢复[22]

    图 4  Al13、AlCl3最佳投加量时污泥的絮体粒径和分形维数变化
    Figure 4.  Particle size and fractal dimension of flocs under the optimal dosage of Al13 and AlCl3

    分形维数是表示分形体不规则的量度[23],分形维数越高,絮体越紧实[24]。从图4中可看出,Al13和AlCl3的分形维数稳定时分别在2.48和2.44左右,相差不大,2者絮体密实程度无明显差别。从图5扫描电镜图中可以看出,原泥表面光滑,絮体规则而紧密,经AlCl3和Al13调理过后的污泥絮体松散。

    图 5  原泥和AlCl3、Al13最佳投加量时污泥絮体的扫描电镜
    Figure 5.  SEM of raw sludge and conditioned sludge under the optimal dosage of Al13 and AlCl3

    图6是Al13和AlCl3不同投加量下的污泥上清液余铝浓度,Al13调理后的污泥上清液余铝浓度最高为1.35 mg·L−1,远远低于AlCl3调理后的污泥上清液余铝浓度。未投加铝盐混凝剂的原泥上清液中余铝浓度为0.83 mg·L−1。这是因为,制水工艺中投加的铝盐混凝剂沉降下来,富集了这部分混凝剂的沉后水污泥排入污泥池中,使得污泥中铝离子含量偏高。因此,如何在保证调理效果的基础上降低余铝浓度,是下一步要解决的重要问题。图7为投加2种调理剂后溶液DOC含量的变化,原泥DOC浓度为32.25 mg·L−1,Al13的加入使得DOC含量迅速下降到16.21 mg·L−1,继续投加,DOC变化幅度较小,最佳投加量时为14.27 mg·L−1;随着投加量的增加,AlCl3调理后的污泥DOC变化较为平缓,最佳投加量时的浓度为21.93 mg·L−1,再继续增加投加量,DOC浓度变高,这是因为投加量过多,体系pH下降,引起了颗粒的复稳。考虑到污泥脱水后脱出水的回用,如果投加Al13的污泥上清液余铝和溶解性有机物含量更低,则回用后续处理将会更简单。

    图 6  调理后污泥上清液余铝
    Figure 6.  Residual aluminum of conditioned sludge’s supernatant
    图 7  调理后污泥上清液DOC
    Figure 7.  DOC content of conditioned sludge’s supernatant

    综合前4节的分析可知,Al13和AlCl3加入给水厂污泥后,与污泥中的有机质相互作用,降低了污泥体系中有机物的含量,使得污泥颗粒聚集成尺寸更大、结构更疏松的絮体,最终造成水分更容易脱出。同时发现,有机物的含量与污泥脱水性能联系密切,在加入Al13的污泥中,有机物去除量更高,因此该调理剂的脱水性能优于AlCl3图8为Al13、AlCl3与有机物的相互作用模型,AlCl3(Ala)可通过络合作用与给水污泥中的有机物结合,并形成Ala-有机物络合物,由于给水污泥中的有机物来源于天然水体,其中的大部分有机物分子量较小,不足以给Ala形成的絮凝体提供凝核,因此部分Ala-有机物络合物未能沉淀;相比之下,带有更多正电荷的Al13(Alb)不仅能够有效中和有机物的负电荷,还可作为核团与可溶性有机物形成絮体[25]。因此,Al13调理后的污泥相对AlCl3来讲,上清液中的有机物浓度更低。

    图 8  Al13、AlCl3与有机物相互作用模型
    Figure 8.  Model of interaction of Al13、AlCl3 and organic matters

    1)以Al含量计,Al13和AlCl3的最佳投加量分别为0.336和0.800 g·L−1,此时Al13的CST和SRF均小于AlCl3,Al13在投加量较少的情况下便可取得良好的脱水效果。调理后的污泥絮体相对原泥更松散,有利于水分的脱出。

    2)相比于AlCl3,Al13更能有效地与有机物形成沉淀,调理后的污泥有机物含量更低,在蛋白质含量降低的体现上尤为突出。Al13调理后的污泥上清液余铝浓度也远远低于AlCl3,更利于给水厂的回用。

  • 图 1  硫自养反硝化填充床实验装置

    Figure 1.  Sulfur autotrophic denitrification packed bed reactor

    图 2  碱度投加量对自养反硝化运行效能的影响

    Figure 2.  Influence of alkalinity on operation efficiency of auto trophic denitrification

    图 3  HRT对自养反硝化运行效能影响

    Figure 3.  Influence of HRT on operation efficiency of autotrophic denitrification

    图 4  协同反硝化进出水水质变化

    Figure 4.  Water quality variations of influent and effluent on synergistic denitrification

    图 5  沿程脱氮效果

    Figure 5.  Nitrogen removal effect along the process

    图 6  进出水COD变化

    Figure 6.  Effect analysis of COD removal

    图 7  出水硫酸根理论与实际值对比

    Figure 7.  Comparison of theoretical and realconcentration of sulfate

    图 8  异养贡献比例分析

    Figure 8.  Analysis of contribution ratio of heterotrophic

    图 9  实际耗碱量与理论耗碱量对比分析

    Figure 9.  Comparisons of theoretical and realconsumption of alkalinity

    表 1  碱度投加量对运行效能的影响实验配水水质

    Table 1.  Water component of the experiment impact of different alkalinity on operational efficiency mg·L−1

    碱度投加量NO3-NHCO3NH+4-NTP
    83.3730.0083.668.408.00
    167.8230.00167.318.408.00
    259.4230.00250.978.408.00
    352.1330.00334.638.408.00
    碱度投加量NO3-NHCO3NH+4-NTP
    83.3730.0083.668.408.00
    167.8230.00167.318.408.00
    259.4230.00250.978.408.00
    352.1330.00334.638.408.00
    下载: 导出CSV

    表 2  碳源投加量对运行效能的影响实验配水水质

    Table 2.  Water component of the experiment impact of different carbon source on operational efficiency mg·L−1

    碳源投加量NO3-NHCO3NH+4-NTPCH3COONa
    5.9930.00250.978.408.005.99
    11.9830.00250.978.408.0011.98
    23.9630.00250.978.408.0023.96
    碳源投加量NO3-NHCO3NH+4-NTPCH3COONa
    5.9930.00250.978.408.005.99
    11.9830.00250.978.408.0011.98
    23.9630.00250.978.408.0023.96
    下载: 导出CSV
  • [1] 蔡碧婧, 谢丽, 杨殿海, 等. 反硝化脱氮工艺补充碳源选择与优化研究进展[J]. 净水技术, 2007, 26(6): 37-41. doi: 10.3969/j.issn.1009-0177.2007.06.010
    [2] 杜海峰. 硫自养反硝化处理模拟地下水硝酸盐研究[D]. 石家庄: 河北科技大学, 2014.
    [3] SAHINKAYA E, DURSUN N. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: Elimination of excess sulfate production and alkalinity requirement[J]. Chemosphere, 2012, 89(2): 144-149. doi: 10.1016/j.chemosphere.2012.05.029
    [4] OH S E, YOO Y B, YOUNG J C, et al. Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions[J]. Journal of Biotechnology, 2002, 92(1): 1-8.
    [5] QAMBRANI N A, OH S E. Influence of reactive media composition and chemical oxygen demand as methanol on autotrophic sulfur denitrification[J]. Journal of Microbiology and Biotechnology, 2012, 22(8): 1155-1160. doi: 10.4014/jmb
    [6] 袁莹, 周伟丽, 王晖, 等. 不同电子供体的硫自养反硝化脱氮实验研究[J]. 环境科学, 2013, 34(5): 1835-1844.
    [7] BATCHELOR B, LAWRENCE A W. A kinetic model for autotrophic denitrification using elemental sulfur[J]. Water Research, 1978, 12(12): 1075-1084. doi: 10.1016/0043-1354(78)90053-2
    [8] SUN Y, NEMATI M. Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters[J]. Bioresource Technology, 2012, 114: 207-216. doi: 10.1016/j.biortech.2012.03.061
    [9] WANG J, LU H, CHEN G H, et al. A novel sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process for saline wastewater treatment[J]. Water Research, 2009, 43(9): 2363-2372. doi: 10.1016/j.watres.2009.02.037
    [10] ZHANG L, ZHANG C, HU C, et al. Denitrification of groundwater using a sulfur-oxidizing autotrophic denitrifying anaerobic fluidized-bed MBR: Performance and bacterial community structure[J]. Applied Microbiology and Biotechnology, 2015, 99(6): 2815-2827. doi: 10.1007/s00253-014-6113-9
    [11] KOENIG A, LIU L H. Microbial aspects of autotrophic denitrification of wastewaters[M]//TOMONORI M, KEISUKE H, SATOSHI T, et al. Advances in Water and Wastewater Treatment Technology. Elsevier, 2001: 217-226.
    [12] SAHINKAYA E, DURSUN N, KILIC A, et al. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: Control of sulfate production[J]. Water Research, 2011, 45(20): 6661-6667. doi: 10.1016/j.watres.2011.09.056
    [13] 蒲娇阳. 硫铁矿自养反硝化去除地下水中硝酸盐的研究[D]. 北京: 中国地质大学(北京), 2015.
    [14] KIMURA K, NAKAMURA M, WATANABE Y. Nitrate removal by a combination of elemental sulfur-based denitrification and membrane filtration[J]. Water Research, 2002, 36(7): 1758-1766. doi: 10.1016/S0043-1354(01)00376-1
    [15] SAHINKAYA E, DURSUN N. Use of elemental sulfur and thiosulfate as electron sources for water denitrification[J]. Bioprocess and Biosystems Engineering, 2015, 38(3): 531-541. doi: 10.1007/s00449-014-1293-3
    [16] XU X, CHEN C, WANG A, et al. Mathematical modeling of simultaneous carbon-nitrogen-sulfur removal from industrial wastewater[J]. Journal of Hazardous Materials, 2017, 321(17): 371-381.
    [17] 李祥, 马航, 黄勇, 等. 异养与硫自养反硝化协同处理高硝氮废水特性研究[J]. 环境科学, 2016, 37(7): 2646-2651.
    [18] 陈川. 自养菌-异养菌协同反硝化脱硫工艺的运行与调控策略[D]. 哈尔滨: 哈尔滨工业大学, 2011.
    [19] 张超. 疏自荞异养混合营养反肖化去除硝酸根运行性能及分子生态学研究[D]. 杭州: 浙江工业大学, 2014.
    [20] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
  • 加载中
图( 9) 表( 2)
计量
  • 文章访问数:  6675
  • HTML全文浏览数:  6675
  • PDF下载数:  122
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-12-05
  • 录用日期:  2019-06-05
  • 刊出日期:  2019-11-15
王巧茹, 史旋, 宋伟, 张小磊, 李继. 碳源强化下的硫自养/异养反硝化协同作用[J]. 环境工程学报, 2019, 13(11): 2593-2600. doi: 10.12030/j.cjee.201812042
引用本文: 王巧茹, 史旋, 宋伟, 张小磊, 李继. 碳源强化下的硫自养/异养反硝化协同作用[J]. 环境工程学报, 2019, 13(11): 2593-2600. doi: 10.12030/j.cjee.201812042
WANG Qiaoru, SHI Xuan, SONG Wei, ZHANG Xiaolei, LI Ji. Synergistic analysis of sulfur autotrophic/heterotrophic denitrification under carbon source enhancement[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2593-2600. doi: 10.12030/j.cjee.201812042
Citation: WANG Qiaoru, SHI Xuan, SONG Wei, ZHANG Xiaolei, LI Ji. Synergistic analysis of sulfur autotrophic/heterotrophic denitrification under carbon source enhancement[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2593-2600. doi: 10.12030/j.cjee.201812042

碳源强化下的硫自养/异养反硝化协同作用

    通讯作者: 李继(1973—),男,博士,教授。研究方向:城市污水深度除磷脱氮等。E-mail:liji99@foxmail.com
    作者简介: 王巧茹(1994—),女,硕士研究生。研究方向:水污染控制。E-mail:1152613092@qq.com
  • 1. 哈尔滨工业大学(深圳),深圳市水资源利用与环境污染控制重点实验室,深圳 518055
  • 2. 上海市建筑科学研究院,上海 201108

摘要: 为强化硫自养反硝化过程,通过向连续稳定运行的硫自养反硝化反应器内投加少量碳源以进行强化,乙酸钠投加量分别为5.99、11.98、23.96 mg·L−1。分析投加前后反应器内硝氮、COD、硫酸根和耗碱量的变化;研究了碳源强化下硫自养反硝化运行效能及反应机理。结果表明,投加少量碳源可增强自养反硝化过程硝氮的去除效果;在3种碳源投加量条件下,COD的利用率均大于85%,但硫酸盐生成量并未减少;在5.99 mg·L−1碳源投加量下,系统实际耗碱量大于以硫酸根和COD计的理论耗碱量,而在11.98 mg·L−1和23.96 mg·L−1投加量下,实际耗碱量均介于2种理论值之间。在投加少量碳源后,自养反硝化脱氮效果明显提高,异养反硝化趋势随着碳源投加量的增加而增加。

English Abstract

  • 随着水质排放标准的提高,如何使脱氮更加经济有效受到社会各界的广泛关注。在众多方法中,生物硝化反硝化法是目前最理想的脱氮方法[1]。生物脱氮一般采用异养反硝化法。该方法通常存在碳源不足,须外加有机碳源的问题,运行成本高,且处理后存在二次污染风险[2-4]。相较于异养反硝化过程,自养反硝化法以硫自养反硝化研究居多,利用单质硫提供电子,在缺氧条件下达到氮还原的目的[5-7]。其主要具有以下优势:1)无须外加有机碳源,无二次污染问题;2)剩余污泥产量低,污泥处理成本显著降低[8-9];3)硫自养反硝化过程中N2O等温室气体产量低[10]。此外,硫自养反硝化也存在2点技术缺陷:一方面,硫自养反硝化过程中会产生H+,导致系统pH降低,须补充碱度以维持硫自养反硝化细菌生长最适pH[11];另一方面,产生的硫酸盐是须控制的环境污染物之一[12-13]

    近年来,有研究者针对2种反硝化存在的问题,在异养与硫自养反硝化的基础上,结合两者的优缺点,实现协同脱氮的目的[14-16]。李祥等[17]将单质硫投加至异养反硝化反应器中进行协同作用,污泥产量缩减一半,且无须外加碱度。陈川[18]利用自养/异养菌的协同作用进行反硝化脱硫,以单质硫为终产物,实现资源的回用。张超[19]向硫自养反硝化系统中适当投加碳源,研究了甲醇、乙醇2种碳源对硫自养/异养协同反硝化去除效果及最终产物的影响,达到了提高脱氮能力和抑制过多硫酸盐生成的效果。

    硫自养反硝化效果在碳源投加后得到强化,但关于强化后的反硝化系统中自养和异养反硝化贡献度的研究相对较少。本研究在连续稳定运行的硫自养反硝化反应器内,投加少量碳源,实现硫自养/异养协同反硝化过程;通过分析投加碳源后的脱氮效果、碱度、硫酸盐和COD的变化,进一步探讨碳源强化硫自养过程脱氮效果,并对协同反硝化作用机制进行分析讨论,以期为更高效的脱氮处理提供参考。

  • 实验采用单质硫填充床反应器,实验装置如图1所示。反应器内径32 mm,高度1 400 mm,填料填充高度1 250 mm,有效体积1 L,进水口距反应器底部20 mm,沿程设置8个取样口用于获取沿程水样,另在沿程方向平均设置4个填料取样口。

    实验共设置2组行反应器,分别用于硫自养反硝化和协同反硝化效能对比研究。硫自养反硝化反应器与协同反硝化反应器内部均装填直径1~3 mm片状单质硫,进水采用上向流连续进水。

  • 实验接种污泥取自深圳市某污水处理厂缺氧段污泥,经硫代硫酸钠驯化富集培养20 d后,污泥浓度MLSS=3 000 mg·L−1,接种至硫自养反应器中,接种量500 mL。

    实验进水采用人工配水,碱度投加量对运行效能的影响实验和碳源投加量对运行效能的影响实验中水质情况分别如表1表2所示。

    硫自养反硝化实验通过改变进水碱度和水力停留时间(HRT)来探究协同反硝化的实验条件,协同反硝化实验通过改变乙酸钠投加量以探究碳源投加量对反硝化效能的影响。

  • 实验仪器:紫外分光光度计(UV-2600型,岛津);电子天平(BSA2245-CW型,德国赛多利斯);电热鼓风干燥箱(DHG-9145A型,上海一恒科学仪器有限公司);调温电热套(KDM型,山东华鲁电热仪器有限公司)。

    实验试剂:无水乙酸钠(CH3COONa),分析纯;酚酞(C20H14O4);甲基橙(C14H14N3NaO3S);98%碳酸氢钠(NaHCO3);铬酸钾(K2CrO4),分析纯;氯化钡(BaCl2·2H2O),分析纯;无水硫酸钠(Na2SO4),优级纯;氨基磺酸(NH2SO3H),分析纯;对氨基苯磺酰胺(C6H8N2O2S),分析纯;N-(1-萘基)-乙二胺二盐酸盐(C10H7NHC2H4NH2·2HCl),分析纯;重铬酸钾(K2Cr2O7),优级纯;硫酸亚铁铵((NH4)2Fe(SO4)2·6H2O),分析纯;硫酸铝钾(KAl(SO4)2·12H2O),分析纯;钼酸铵((NH4)6Mo7O24),分析纯;硫酸银(Ag2SO4),分析纯;七水合硫酸亚铁(FeSO4·7H2O),分析纯;99%无水邻菲罗啉(C12H8N2);硫酸汞(HgSO4),优级纯。

  • 采用紫外分光光度法[20]测定NO3-N浓度;采用N-(1-萘基)-乙二胺光度法[20]测定NO2-N浓度;采用铬酸钡光度法[20]测定SO24浓度;采用酸碱指示剂滴定法[20]测定碱度;采用快速密闭催化消解法[20]测定CODMn

  • 实验初期进行硫自养反硝化培养,进水硝氮浓度30.00 mg·L−1,进水碱度(以CaCO3计)分别设置为理论投加量的0.5、1、1.5和2倍,即实际碱度投加量分别为83.37、167.82、259.42和352.13 mg·L−1,检测进出水中NO3-NNO2-N浓度。不同碱度对自养反硝化效能的影响如图2所示。从图2可以看出,协同反硝化最适碱度投加量为理论值1.5倍时即可实现完全反硝化,出水NO3-N浓度为0.15 mg·L−1NO2-N浓度小于0.1 mg·L−1。在1.5倍碱度投加量条件下,控制HRT分别为0.5、1、1.5和2 h,测定进出水NO3-NNO2-N浓度,结果如图3所示。可以看出,当HRT为0.5 h时,自养反硝化过程正常进行且硝氮有剩余,硝氮去除率为62%,这有利于后续研究硫自养/异养协同反硝化强化脱氮的效能及反应机理。

    在HRT为0.5 h,1.5倍碱度投加量条件下,当硫自养反硝化反应器稳定运行至出水NO3-N浓度约为10 mg·L−1时,向反应器内投加碳源,探究了硫自养/异养协同反硝化运行效能。选取完全降解上述自养反硝化剩余10 mg·L−1 NO3-N所需的0.125、0.25、0.5倍碳源投加量(以乙酸钠计),即实际投加的碳源量分别为5.99、11.98、23.96 mg·L−1,检测了协同反硝化条件下进出水NO3-NNO2-N浓度以及碱度变化,结果如图4所示。

    图4(a)可以看出,在自养反硝化阶段,出水NO3-N浓度为10.98 mg·L−1,去除率为66.3%;在5.99、11.98、23.96 mg·L−1碳源期各阶段出水NO3-N浓度分别为6.46、2.32、0.35 mg·L−1,去除率分别为79.4%、92.9%、99.0%。分析出水NO2-N浓度变化发现,在碳源投加量不超过理论值的0.25倍时,出水NO2-N低于0.02 mg·L−1;当投加量增加到理论值的0.5倍时,出水NO2-N浓度升高至0.65 mg·L−1。有研究[12]发现,在反硝化过程中,反应分2步进行:首先,NO3-N转化为NO2-N;然后,NO2-N转化为N2。在自养反硝化过程中,NO3-N转化为NO2-N的反应速率小于NO2-N转化为N2的反应速率,而异养反硝化过程恰好相反。因此,硫自养反硝化过程中投加碳源可增强异养反硝化效果,从而显著提高反硝化速率。

    在不同碳源投加量下,耗碱量的对比结果如图4(b)所示。根据运行期间进出水碱度和硝氮去除量,可以得到协同反硝化的实际耗碱量以及同等去除量条件下自养反硝化的耗碱量。5.99 mg·L−1碳源投加量时的碱度消耗量较自养反硝化阶段无明显变化。自养反硝化阶段耗碱量比理论值减少18 mg·L−1,而5.99 mg·L−1碳源投加量条件下,耗碱量只比理论值减少20.19 mg·L−1。SAHINKAYA等[12]通过批次实验证实了在碳源量投加量较低时,会出现碳源被完全利用却无任何异养反硝化过程发生的现象,这可能是兼性自养/异养反硝化菌作用的结果,说明当碳源投加量仅为5.99 mg·L−1时,异养反硝化并无明显贡献。而11.98 mg·L−1和23.96 mg·L−1碳源投加量条件下,耗碱量变化较明显,分别比理论值减少了43.87 mg·L−1和64.31 mg·L−1。理论上,自养条件去除1 gNO3-N将会消耗4.57 g CaCO3 碱度,而异养条件下每去除1 g NO3-N将会产生3.57 g CaCO3 碱度。在11.98 mg·L−1和23.96 mg·L−1碳源投加量条件下,碱度理论消耗量与实际消耗量的差值随投加量增加而增加,这说明反应中出现了明显的异养反硝化现象。

    在一个完整水力停留时间期间内,测定不同碳源投加量下沿程出水NO3-N浓度变化,结果如图5所示。由图5可以看出,自养反硝化过程中前半段反硝化速率较低,反应主要在中后段。随着碳源投加量的增加,前半段反硝化速率明显提高,5.99 mg·L−1碳源期整个沿程过程中反应速率均匀;11.98 mg·L−1和23.96 mg·L−1碳源期前半段NO3-N的降解速率明显提高,这表明向硫自养反硝化系统中投加适量碳源可显著提高反硝化效率,且随碳源投加量的增加,反硝化速率逐渐增强。

  • 1)协同条件下进出水COD对比分析。为探究不同碳源投加量条件下,协同反硝化过程中COD消耗量同脱氮效率之间的关系。分别对5.99、11.98和23.96 mg·L−1碳源投加量条件下的进出水COD进行了检测,结果如图6所示。计算得到3种条件下COD消耗量分别为4.11、8.15、15.54 mg·L−1,相对应的异养反硝化硝氮去除量分别为1.12、2.18、4.16 mg·L−1。分析各阶段COD利用率发现,除5.99 mg·L−1碳源投量条件下COD被完全消耗,11.98 mg·L−1和23.96 mg·L−1碳源投加量条件下COD均有剩余,利用率分别为86.5%和87.7%,COD利用率有所降低,这表明自氧反硝化作用或者微生物可能影响COD的利用。

  • 2)协同条件下进出水硫酸盐影响。为确定协同条件下自养部分实际的硝氮量去除,分别测定了不同反应条件下出水硫酸盐浓度,结果如图7所示。在3种碳源投加量条件下的硫酸盐生成量分别为127.55、180.27和183.18 mg·L−1。根据实际出水硝氮值,完全自养反硝化应生成的硫酸盐的量分别为130.15、185.87和202.11 mg·L−1。根据COD消耗量对应的硝氮去除量值可确定随碳源投加而减少的硫酸盐生成量,分别为8.41、16.44和31.34 mg·L−1。因此,协同条件下的硫酸盐实际生成量同理论值相比,分别增加了5.81、10.84和12.40 mg·L−1;另一方面,协同过程中硫酸盐实际生成量和纯自养理论生成量并无明显差异,这说明协同条件下与自养条件下的硫酸盐生成量基本一致。通过COD消耗量计算得出的协同条件下的硫酸盐理论生成量亦比实际生成量少。COD被消耗表明有异养反硝化反应发生,而硫酸盐生成量则反映自养反硝化程度。由于协同反硝化过程中异养反硝化的存在,会一定程度上减少硫酸盐的生成量,而实验的结果则显示,硫酸盐生成量随着碳源消耗无明显减少。

    对根据硫酸盐生成量计算得出的硝氮去除量进行分析。图8反映了根据出水SO24含量所得的协同条件下的自养去除量和异养脱氮比例,以及根据COD消耗量得到的自养脱氮比例。其中,异养脱氮比例(rh)与自养脱氮比例(ra)的计算方法如式(1)和式(2)所示。

    式中:S为实际硫酸根生成量,mg·L−1; N为实际硝氮去除量,mg·L−1; SN为去除1 mg·L−1硝氮的SO24生成量,mg·L−1; R为COD消耗量,mg·L−1; RN为去除1 mg·L−1硝氮的COD生成量,mg·L−1

    自养和异养脱氮比例呈现良好的负相关关系,3种碳源投加量条件下的异养脱氮比例分别为5.3%、9.1%和15.5%,自养脱氮比例为95.1%,92.6%和87.1%。随着碳源投加量的增加,碳源被用于异养反硝化的比重也在不断增加。3种条件下自养与异养脱氮比例加和后的总和分别为100.3%、101.7%和102.6%,表明随着碳源投加量的增加,自养与异养的去除效果有叠加效应。

  • 3)协同条件下碱度分析。为进一步探究协同反硝化过程异养反硝化的作用,考察了硝氮去除量与碱度消耗量之间的关系。对协同反硝化条件下耗碱量进行分析,排除自养本身耗碱量与理论值的偏差,投加碳源之后均在一定程度上减少了碱度消耗量,如图9所示。图9中的实际耗碱量表示由实际硝氮去除量得到相同去除量在完全自养条件下需要的碱度,理论耗碱量(以COD计)表示从COD消耗量推算理论上异养反硝化产生碱度的量,与自养反硝化叠加即可得到1.5倍碱度投加量下协同反硝化过程的碱度消耗值,理论耗碱量(以SO24计)表示从硫酸盐生成量推算消耗的理论碱度。3种碳源投加量条件下的实际耗碱量分别为114.40、117.26、101.49 mg·L−1。在5.99 mg·L−1碳源投加量条件下,根据COD消耗量推算得出的耗碱量为93.35 mg·L−1,根据硫酸盐生成量得到的耗碱量为97.43 mg·L−1,均小于实际耗碱量。结果表明,虽然反应过程中COD有被利用,但实际并无明显的碱度产生,因而耗碱量大于理论值。而实际耗碱量和理论耗碱量(以SO24计)的差值则表明在碱度被消耗的同时,没有产生硫酸盐,说明存在兼性反硝化细菌导致有机碳源在被利用的同时消耗了碱度[8]。在11.98 mg·L−1碳源投加量条件下,根据COD消耗量得出的耗碱量为111.06 mg·L−1,小于实际耗碱量,而根据硫酸盐生成量得到的耗碱量为123.22 mg·L−1,大于实际耗碱量,即在COD被利用的同时又消耗了部分碱度,自养与异养现象同时存在,结合硫酸盐的生成情况,这一阶段投加碳源显著增强了自养反硝化的效果。实际耗碱量值介于2种理论值之间,表明虽然有异养现象存在,但主要是由于兼性反硝化菌的存在,却并没有真正的异养反硝化反应发生。此外,23.96 mg·L−1碳源投加量条件下存在相同现象,根据COD消耗量得出的耗碱量为98.31 mg·L−1,而根据硫酸盐生成量得到的耗碱量为121.49 mg·L−1,结果表明仍无明显的异养反硝化反应发生,但理论耗碱量(以COD计)与实际耗碱量减小,说明随之碳源投加量增加异养作用有增强的趋势。

  • 1)当分别向自养反硝化系统中投加5.99、11.98和23.96 mg·L−1碳源时,相比于自养过程,协同反硝化过程分别增加了12.83、15.10、15.58 mg·L−1硝氮的去除量,表明投加少量碳源对反硝化过程有明显的强化作用。

    2)在协同反硝化过程中,随着碳源的消耗,在3种碳源投加量条件下,均有超过85% COD被利用,但SO24生成量并未减少。其原因是,较少碳源投加时,虽有异养反硝化现象发生,但脱氮效果的提高主要源于自养反硝化效率的提高。

    3)当碳源投加量为5.99 mg·L−1时,实际耗碱量大于根据硫酸根和COD得到的理论耗碱量;而11.98 mg·L−1和23.96 mg·L−1碳源投加条件下,实际耗碱量则均处于2种理论值之间。这说明,实验过程中无单纯异养反硝化发生,但增加碳源投加量会增加异养反硝化的趋势。

参考文献 (20)

返回顶部

目录

/

返回文章
返回