-
随着核能的广泛应用,对铀矿的开采不断增加,随之而来的尾矿砂、石以及尾矿浆的量也不断增加[1]。裸露的铀尾矿砂石在风化雨淋渗透作用下会使铀以及其他有害物质释放,进入河流及土壤环境内并对环境安全造成严重危害[2-3]。中国土壤中铀元素背景值为0.42~21.10 mg·kg-1[4],而有研究发现铀尾矿库区土壤中铀含量是其背景值的2~4倍[5],因此,对铀污染土壤进行有效修复至关重要。
目前,广泛用于铀污染土壤处理的方法有化学、生物和物理法。化学法中的原位固定法是铀污染土壤常用修复方法之一,因其成本低、易操作、见效快、适用范围广等特点被广泛采用[6]。近年来,纳米材料(粒径1~100 nm)因其巨大比表面积、超强吸附、螯合和催化能力等特点,在土壤修复中不仅克服了传统固定剂效率低、选择性差等缺点,还表现出良好吸附性能、多表面结合位点、高氧化还原性等优点[7-8]。有研究[9-12]表明,纳米零价铁(nano-scale zero-valentiron,nZVI)能够较好的对土壤中的Pb、As、Hg、Pb、Cd、Zn等重金属进行固定修复,明显降低土壤中重金属的浸出值;ZHANG等[13]利用固定床、间歇吸附、PRB等实验研究表明,nZVI对红壤中的铀具有良好的吸附效果。
目前,土壤固定化修复主要集中在重金属如铜、镉、锌、汞等方面,而对尾矿库土壤中铀污染的研究较少[14]。本研究以nZVI作为固定剂,对铀尾矿库中铀元素固定前、后的形态变化特征进行了研究,并对固定后的含铀土壤进行了毒性浸出实验,以探明nZVI的固定铀尾矿土壤中铀的机理,为铀尾矿土壤的修复提供参考。
纳米零价铁对铀尾矿库土壤中铀形态分布及固定效果的影响
Effect of nano-zero-valent iron on the uranium speciation distribution and fixation in uranium tailings soil
-
摘要: 针对纳米零价铁(nZVI)对铀尾矿库土壤中铀形态分布和U(Ⅵ)固定效果影响问题,采用逐级化学提取、毒性浸出(TCLP)和磁性分离实验,利用SEM-EDS和XRD对nZVI固定前后的铀尾矿土壤进行表征;研究了nZVI在不同投加量和pH条件下,对尾矿库土壤固定前后铀的形态分布和固定效果的影响,并对nZVI的固定机理进行了探讨。结果表明:当nZVI的投加量为8%、pH为5时,土壤中U(Ⅵ)的固定效果最好,固定后土壤中铀的毒性浸出值仅为13.98%;对经过nZVI处理后的铀尾矿土壤进行磁性分离发现,磁性和非磁性土壤重量占比分别为32.87%和67.13%,其铀含量分别达到55.05%和44.95%,说明nZVI对土壤中的U(Ⅵ)有较好的富集作用。nZVI对铀尾矿库土壤中的U(Ⅵ)有较好的原位固定和富集效果,并能减少土壤中铀的析出。Abstract: In order to reveal the effect of nano-zero-valent iron (nZVI) on the uranium speciation distribution and fixation in the uranium tailings soil, the stepwise chemical extraction, toxic leaching experiment (TCLP) and magnetic separation experiments were conducted. SEM-EDS and XRD were used to characterize uranium tailings soil before and after nZVI fixation. The effects of nZVI doses and pHs on the uranium speciation distribution and fixation, as well as the fixation mechanism, were studied. The results showed that the best U(Ⅵ) fixation occurred at nZVI dosage of 8% and pH=5, and the toxic leaching value of uranium in nZVI fixed soil was only 13.98%. Through magnetic separation of the nZVI treated uranium tailings soil, the weight ratio of magnetic soil and non-magnetic soil were 32.87% and 67.13%, and their the uranium content were 55.05% and 44.95%, respectively. Therefore, nZVI has a desirable in-situ fixation and enrichment effect on U(Ⅵ) in the uranium tailings, and could reduce the uranium leaching from the soil.
-
Key words:
- uranium tailings /
- soil pollution /
- nano-zero-valent iron /
- uranium fixation /
- speciation distribution
-
-
[1] WAGNER F, JUNG H, HIMMELSBACH T, et al. Impact of uranium mill tailings on water resources in Mailuu Suu, Kyrgyzstan[C]//TU Bergakademie Freiberg Institute of Geology. Proceedings of the 7th International Conference on Uranium Mining and Hydrogeology, Freiberg, Germany, 2015: 487-496. [2] RUEDIG E, JOHNSON T E. An evaluation of health risk to the public as a consequence of in situ uranium mining in Wyoming, USA[J]. Journal of Environmental Radioactivity, 2015, 150: 170-178. doi: 10.1016/j.jenvrad.2015.08.004 [3] RAMZAEY V, BARKOVSKY A, GONCHAROVA Y, et al. Radiocesium fallout in the grasslands on Sakhalin, Kunashir and Shikotan Islands due to Fukushima accident: The radioactive contamination of soil and plants in 2011[J]. Journal of Environmental Radioactivity, 2013, 118(4): 128-142. [4] 马盼军, 王哲, 易发成, 等.某铀尾矿库周边土壤中铀元素的空间分布与污染评价[J].原子能科学技术, 2017, 51(5):956-960. [5] 马盼军.某铀尾矿库周边土壤中核素U与重金属元素空间分布与污染评价研究[D].绵阳: 西南科技大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10619-1017172873.htm [6] 苏峰丙, 罗学刚, 唐永金, 等.不同含磷化合物固化修复铀污染土壤的研究[J].核农学报, 2018, 32(2): 407-415. [7] 岳宗恺, 周启星.纳米材料在有机污染土壤修复中的应用与展望[J].农业环境科学学报, 2017, 36(10): 1929-1937. doi: 10.11654/jaes.2017-0330 [8] 刘蕊, 周启星, 马奇英.纳米材料在污染水体和土壤修复中的应用[J].生态学杂志, 2010, 29(9): 1852-1859. [9] GILDIAZ M, PEREZSANZ A, VICENTE M, et al. Immobilisation of Pb and Zn in soils using stabilised zero‐valent iron nanoparticles: Effects on soil properties[J]. Clean-Soil Air Water, 2015, 42(12): 1776-1784. [10] GILDIAZ M, DIEZPASCUAL S, GONZALEZ A, et al. A nanoremediation strategy for the recovery of an As-polluted soil[J]. Chemosphere, 2016, 149: 137-145. doi: 10.1016/j.chemosphere.2016.01.106 [11] GIL-DIAZ M, ALONSO J, RODRIGUEZ-VALDES E, et al. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil[J]. Science of the Total Environment, 2017, 584-585: 1324-1332. doi: 10.1016/j.scitotenv.2017.02.011 [12] VITKOVA M, RAKOSOVA S, MICHALKOVA Z, et al. Metalloids behaviour in soils amended with nano zero-valent iron as a function of pH and time[J]. Journal of Environmental Management, 2017, 186(Pt2): 268-276. [13] ZHANG Z, LIU J, CAO X, et al. Comparison of U(Ⅵ) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(Ⅵ)-CO3/Ca-U(Ⅵ)-CO3 complexes[J]. Journal of Hazardous Materials, 2015, 300(77): 633-642. [14] 吴烈善, 曾东梅, 莫小荣, 等.不同钝化剂对重金属污染土壤稳定化效应的研究[J].环境科学, 2015, 36(1): 309-313. [15] US ENVIRONMENTAL PROTECTION AGENCY. Toxicity characteristic leaching procedure: SW-846-method1311[S]. Washington D C: US Environmental Protection Agency, 1992. [16] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017 [17] 张彬, 冯志刚, 马强, 等.广东某铀废石堆周边土壤中铀污染特征及其环境有效性[J].生态环境学报, 2015, 24(1):156-162. [18] WANG Y, SALVAGE K. Immobilization of uranium in the presence of Fe0(s): Model development and simulation of contrasting experimental conditions[J]. Applied Geochemistry, 2005, 20(7): 1268-1283. doi: 10.1016/j.apgeochem.2005.02.006 [19] HANAUER T, FELIX-HENNINGSEN P, STEFFENS D, et al. In situ stabilization of metals (Cu, Cd, and Zn) in contaminated soils in the region of Bolnisi, Georgia[J]. Plant & Soil, 2011, 341(1/2): 193-208. [20] IWEGBUE C M. Metal fractionation in soil profiles at automobile mechanic waste dumps[J]. Waste Management & Research, 2007, 25(6): 585-593. [21] 李小燕, 刘义保, 花明, 等.纳米零价铁去除溶液中U(Ⅵ)的研究[J].核动力工程, 2013, 34(2): 160-163. doi: 10.3969/j.issn.0258-0926.2013.02.038 [22] 周书葵, 侯康龙, 刘迎九, 等.不同固定剂对铀尾矿库中铀稳定效果的实验研究[J].原子能科学技术, 2018, 52(4):583-589. [23] LI X, LIU Y, LI X, et al. Removal of U(Ⅵ) in aqueous solution by nanoscale zero-valent iron(nZVI)[J]. Water Quality Exposure & Health, 2013, 5(1): 31-40. [24] LANDSBERGER S, TAMALIS D, MEADOWS T, et al. Leaching dynamics of uranium in a contaminated soil site[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 296(1): 319-322. doi: 10.1007/s10967-012-2187-y [25] MALLAMPATI S R, MITOMA Y, OKUDA T, et al. Total immobilization of soil heavy metals with nano-Fe/Ca/CaO dispersion mixtures[J]. Environmental Chemistry Letters, 2013, 11(2): 119-125. doi: 10.1007/s10311-012-0384-0 [26] LI Z J, WANG L, YUAN L Y, et al. Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite[J]. Journal of Hazardous Materials, 2015, 290: 26-33. doi: 10.1016/j.jhazmat.2015.02.028 [27] O'CARROLL D, SLEEP B, KROL M, et al. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation[J]. Advances in Water Resources, 2013, 51(1): 104-122.