壳聚糖/磁性生物碳对重金属Cu(Ⅱ)的吸附性能

肖芳芳, 张莹莹, 程建华, 杨草, 胡勇有. 壳聚糖/磁性生物碳对重金属Cu(Ⅱ)的吸附性能[J]. 环境工程学报, 2019, 13(5): 1048-1055. doi: 10.12030/j.cjee.201810181
引用本文: 肖芳芳, 张莹莹, 程建华, 杨草, 胡勇有. 壳聚糖/磁性生物碳对重金属Cu(Ⅱ)的吸附性能[J]. 环境工程学报, 2019, 13(5): 1048-1055. doi: 10.12030/j.cjee.201810181
XIAO Fangfang, ZHANG Yingying, CHENG Jianhua, YANG Cao, HU Yongyou. Adsorption properties of chitosan/magnetic biochar for Cu(Ⅱ) removal from solution[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1048-1055. doi: 10.12030/j.cjee.201810181
Citation: XIAO Fangfang, ZHANG Yingying, CHENG Jianhua, YANG Cao, HU Yongyou. Adsorption properties of chitosan/magnetic biochar for Cu(Ⅱ) removal from solution[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1048-1055. doi: 10.12030/j.cjee.201810181

壳聚糖/磁性生物碳对重金属Cu(Ⅱ)的吸附性能

  • 基金项目:

    国家自然科学基金资助项目U1401235

    广东省应用型科技研发项目2016B020240005

    中央高校基本科研业务费专项基金D2172600

    东莞市社会科学技术发展项目20185071631595国家自然科学基金资助项目(U1401235)

    广东省应用型科技研发项目(2016B020240005)

    中央高校基本科研业务费专项基金(D2172600)

    东莞市社会科学技术发展项目(20185071631595)

Adsorption properties of chitosan/magnetic biochar for Cu(Ⅱ) removal from solution

  • Fund Project:
  • 摘要: 以丝瓜络为原料制备壳聚糖/磁性生物炭(CMLB),并研究了改性前后的生物炭对重金属Cu(Ⅱ)的吸附性能。结果表明,改性后的生物炭包含γ-Fe2O3纳米颗粒,颗粒尺寸均匀,大小一致。CMLB对Cu(Ⅱ)的吸附量为54.68 mg·g-1,高于原始生物炭(LB)、磁性生物炭(MLB)的吸附量,且能够达到壳聚糖吸附量的86%。整个吸附过程在18 h达到平衡,在pH=5.8±0.1有较好的吸附效果。吸附反应动力学可采用准二级动力学方程拟合,吸附等温线符合Freundlich模型。CMLB吸附Cu(Ⅱ)的机制下包括离子交换、物理吸附和共沉淀。CMLB材料在处理废水后,利用磁铁可将材料从水中分离。CMLB可作为一种吸附剂有效去除水中的重金属,应用前景广阔。
  • 加载中
  • [1] CUI X Q, XI D, KHAN K Y, et al. Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata[J]. Bioresource Technology, 2016, 218: 1123-1132.
    [2] ZHOU Y M, BIN G, ZIMMERMAN A R, et al. Sorption of heavy metals on chitosan-modified biochars and its biological effects[J]. Chemical Engineering Journal, 2013, 231: 512-518.
    [3] HUSSAIN A, MAITRA J, KHAN K A. Development of biochar and chitosan blend for heavy metals uptake from synthetic and industrial wastewater[J]. Applied Water Science, 2017, 7(8): 4525-4537.
    [4] WU H P, CUI L, ZENG G M, et al. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: A review[J]. Critical Reviews Biotechnology, 2017, 37(6): 754-764.
    [5] QIAN L B, ZHANG W Y, YAN J C, et al. Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal[J]. Environtal Pollution, 2017, 223: 153-160.
    [6] 吴明山, 马建锋, 杨淑敏, 等. 磁性生物炭复合材料研究进展[J]. 功能材料, 2016, 47(7): 7028-7033.
    [7] LIU S B, HUANG B Y, CHAI L Y, et al. Enhancement of As(V) adsorption from aqueous solution by a magnetic chitosan/biochar composite[J]. RSC Advances, 2017, 7(18): 10891-10900.
    [8] ZHOU F S, WANG H, FANG S, et al. Pb(II), Cr(VI) and atrazine sorption behavior on sludge-derived biochar: Role of humic acids[J]. Environmental Science and Pollution Research, 2015, 22(20): 16031-16039.
    [9] DENG J Q, LIU Y G, LIU S B, et al. Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar[J]. Journal of Colloid and Interface Science, 2017, 506: 355-364.
    [10] PELLERA F M, GIANNIS A, KALDERIS D, et al. Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products[J]. Journal of Environmental of Environmental Management, 2012, 96(1): 35-42.
    [11] SINGH B P, BLAKE J H, SINGH B, et al. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils[J]. Journal of Environmental Quality, 2010, 39(4): 1224-1235.
    [12] WANG C H, GU L F, LIU X Y, et al. Sorption behavior of Cr(VI) on pineapple-peel-derived biochar and the influence of coexisting pyrene[J]. International Biodeterioration & Biodegradation, 2016, 111: 78-84.
    [13] LAIRD D A, FLEMING P, DAVIS D, et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4): 443-449.
    [14] TYTLAK A, PATRYK O, DOBROWOLSKI R. Sorption and desorption of Cr(VI) ions from water by biochars in different environmental conditions[J]. Environmental Science and Pollution Research International, 2015, 22(8): 5985-5994.
    [15] GUPTA V K, PATHANIA D, SHARMA S, et al. Preparation of bio-based porous carbon by microwave assisted phosphoric acid activation and its use for adsorption of Cr(VI)[J]. Jouranl of Colloid and Interface Science, 2013, 401: 125-132.
    [16] ZHOU Y M, GAO B, ZIMMERMAN A R, et al. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions[J]. Bioresource Technology, 2014, 152: 538-542.
    [17] LIU Z G, ZHANG F S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 933-939.
    [18] GAN C, LIU Y G, TAN X F, et al. Effect of porous zinc-biochar nanocomposites on Cr(VI) adsorption from aqueous solution[J]. RSC Advances, 2015, 5: 35107-35115.
    [19] YE S J, ZENG G M, WU H P, et al. Co-occurrence and interactions of pollutants, and their impacts on soil remediation: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(16): 1528-1553.
    [20] YE S J, ZENG G M, WU H P, et al. Biological technologies for the remediation of co-contaminated soil[J]. Critical Reviews in Biotechnology, 2017, 37(8): 1062-1076.
    [21] 蒋艳艳, 胡孝明, 金卫斌, 等. 生物炭对废水中重金属吸附研究进展[J]. 湖北农业科学, 2013, 52(13): 2984-2988.
  • 加载中
计量
  • 文章访问数:  2867
  • HTML全文浏览数:  2764
  • PDF下载数:  160
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-03

壳聚糖/磁性生物碳对重金属Cu(Ⅱ)的吸附性能

  • 1. 华南理工大学环境与能源学院,广州 510006
  • 2. 华南理工大学华南协同创新研究院,东莞 523808
基金项目:

国家自然科学基金资助项目U1401235

广东省应用型科技研发项目2016B020240005

中央高校基本科研业务费专项基金D2172600

东莞市社会科学技术发展项目20185071631595国家自然科学基金资助项目(U1401235)

广东省应用型科技研发项目(2016B020240005)

中央高校基本科研业务费专项基金(D2172600)

东莞市社会科学技术发展项目(20185071631595)

摘要: 以丝瓜络为原料制备壳聚糖/磁性生物炭(CMLB),并研究了改性前后的生物炭对重金属Cu(Ⅱ)的吸附性能。结果表明,改性后的生物炭包含γ-Fe2O3纳米颗粒,颗粒尺寸均匀,大小一致。CMLB对Cu(Ⅱ)的吸附量为54.68 mg·g-1,高于原始生物炭(LB)、磁性生物炭(MLB)的吸附量,且能够达到壳聚糖吸附量的86%。整个吸附过程在18 h达到平衡,在pH=5.8±0.1有较好的吸附效果。吸附反应动力学可采用准二级动力学方程拟合,吸附等温线符合Freundlich模型。CMLB吸附Cu(Ⅱ)的机制下包括离子交换、物理吸附和共沉淀。CMLB材料在处理废水后,利用磁铁可将材料从水中分离。CMLB可作为一种吸附剂有效去除水中的重金属,应用前景广阔。

English Abstract

参考文献 (21)

目录

/

返回文章
返回