[1] CUI X Q, XI D, KHAN K Y, et al. Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata[J]. Bioresource Technology, 2016, 218: 1123-1132.
[2] ZHOU Y M, BIN G, ZIMMERMAN A R, et al. Sorption of heavy metals on chitosan-modified biochars and its biological effects[J]. Chemical Engineering Journal, 2013, 231: 512-518.
[3] HUSSAIN A, MAITRA J, KHAN K A. Development of biochar and chitosan blend for heavy metals uptake from synthetic and industrial wastewater[J]. Applied Water Science, 2017, 7(8): 4525-4537.
[4] WU H P, CUI L, ZENG G M, et al. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: A review[J]. Critical Reviews Biotechnology, 2017, 37(6): 754-764.
[5] QIAN L B, ZHANG W Y, YAN J C, et al. Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal[J]. Environtal Pollution, 2017, 223: 153-160.
[6] 吴明山, 马建锋, 杨淑敏, 等. 磁性生物炭复合材料研究进展[J]. 功能材料, 2016, 47(7): 7028-7033.
[7] LIU S B, HUANG B Y, CHAI L Y, et al. Enhancement of As(V) adsorption from aqueous solution by a magnetic chitosan/biochar composite[J]. RSC Advances, 2017, 7(18): 10891-10900.
[8] ZHOU F S, WANG H, FANG S, et al. Pb(II), Cr(VI) and atrazine sorption behavior on sludge-derived biochar: Role of humic acids[J]. Environmental Science and Pollution Research, 2015, 22(20): 16031-16039.
[9] DENG J Q, LIU Y G, LIU S B, et al. Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar[J]. Journal of Colloid and Interface Science, 2017, 506: 355-364.
[10] PELLERA F M, GIANNIS A, KALDERIS D, et al. Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products[J]. Journal of Environmental of Environmental Management, 2012, 96(1): 35-42.
[11] SINGH B P, BLAKE J H, SINGH B, et al. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils[J]. Journal of Environmental Quality, 2010, 39(4): 1224-1235.
[12] WANG C H, GU L F, LIU X Y, et al. Sorption behavior of Cr(VI) on pineapple-peel-derived biochar and the influence of coexisting pyrene[J]. International Biodeterioration & Biodegradation, 2016, 111: 78-84.
[13] LAIRD D A, FLEMING P, DAVIS D, et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4): 443-449.
[14] TYTLAK A, PATRYK O, DOBROWOLSKI R. Sorption and desorption of Cr(VI) ions from water by biochars in different environmental conditions[J]. Environmental Science and Pollution Research International, 2015, 22(8): 5985-5994.
[15] GUPTA V K, PATHANIA D, SHARMA S, et al. Preparation of bio-based porous carbon by microwave assisted phosphoric acid activation and its use for adsorption of Cr(VI)[J]. Jouranl of Colloid and Interface Science, 2013, 401: 125-132.
[16] ZHOU Y M, GAO B, ZIMMERMAN A R, et al. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions[J]. Bioresource Technology, 2014, 152: 538-542.
[17] LIU Z G, ZHANG F S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 933-939.
[18] GAN C, LIU Y G, TAN X F, et al. Effect of porous zinc-biochar nanocomposites on Cr(VI) adsorption from aqueous solution[J]. RSC Advances, 2015, 5: 35107-35115.
[19] YE S J, ZENG G M, WU H P, et al. Co-occurrence and interactions of pollutants, and their impacts on soil remediation: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(16): 1528-1553.
[20] YE S J, ZENG G M, WU H P, et al. Biological technologies for the remediation of co-contaminated soil[J]. Critical Reviews in Biotechnology, 2017, 37(8): 1062-1076.
[21] 蒋艳艳, 胡孝明, 金卫斌, 等. 生物炭对废水中重金属吸附研究进展[J]. 湖北农业科学, 2013, 52(13): 2984-2988.