热电厂双膜法中水深度处理回用系统膜污染机制分析

郑利兵, 张春, 夏森, 梁国良, 郁达伟, 王钢, 岳增刚, 魏源送. 热电厂双膜法中水深度处理回用系统膜污染机制分析[J]. 环境工程学报, 2019, 13(5): 1038-1047. doi: 10.12030/j.cjee.201812039
引用本文: 郑利兵, 张春, 夏森, 梁国良, 郁达伟, 王钢, 岳增刚, 魏源送. 热电厂双膜法中水深度处理回用系统膜污染机制分析[J]. 环境工程学报, 2019, 13(5): 1038-1047. doi: 10.12030/j.cjee.201812039
ZHENG Libing, ZHANG Chun, XIA Sen, LIANG Guoliang, YU Dawei, WANG Gang, YUE Zenggang, WEI Yuansong. Membrane fouling characterization and mechanism of a full-scale dual membrane process for advanced treatment and reuse of reclaimed water in a thermal power plant[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1038-1047. doi: 10.12030/j.cjee.201812039
Citation: ZHENG Libing, ZHANG Chun, XIA Sen, LIANG Guoliang, YU Dawei, WANG Gang, YUE Zenggang, WEI Yuansong. Membrane fouling characterization and mechanism of a full-scale dual membrane process for advanced treatment and reuse of reclaimed water in a thermal power plant[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1038-1047. doi: 10.12030/j.cjee.201812039

热电厂双膜法中水深度处理回用系统膜污染机制分析

  • 基金项目:

    国家重点研发计划政府间国际科技创新合作重点专项2016YFE0118500

    江西省重点研发项目S2017ZPYFE0411国家重点研发计划政府间国际科技创新合作重点专项(2016YFE0118500)

    江西省重点研发项目(S2017ZPYFE0411)

Membrane fouling characterization and mechanism of a full-scale dual membrane process for advanced treatment and reuse of reclaimed water in a thermal power plant

  • Fund Project:
  • 摘要: 以某热电厂实际规模的双膜法中水回用系统为考察对象,对膜污染结构、形貌、组成与特征进行了研究。结果表明:污染物以有机-无机-微生物复合形式存在,形成致密的膜污染层,无机物主要以P、S、Ca、Si、Mg为主,存在垂直分布特征;有机污染物以腐殖质类、蛋白质、微生物代谢产物为主,且研究发现RO过程富里酸类物质主要为微生物源。碱性清洗液具有更佳的膜污染清洗效果。通过分析可知:微生物污染是膜污染暴发的关键原因,其以杆菌和球菌为主,且具有显著的垂直分布特征;表层微生物主要是α和β变形菌,底层中γ变形菌丰度显著增加。微生物污染垂直分布的主要原因是杀菌和化学清洗过程的选择作用,γ变形菌是先锋微生物,是形成稳定膜污染层的关键物种。因此,控制微生物的滋生是RO中水深度处理的关键,这个过程主要包括预处理工艺的选择和优化杀菌、阻垢和化学清洗策略等。
  • 加载中
  • [1] 魏源送, 郑利兵, 张春, 等. 热电厂中水回用深度处理技术与国内应用进展[J]. 水资源保护, 2018, 34(6): 1-11.
    [2] CHON K, KIM S J, MOON J, et al. Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: An autopsy study of a pilot plant[J]. Water Research, 2012, 46(6): 1803-1816.
    [3] ZHENG L, YU D, WANG G, et al. Characteristics and formation mechanism of membrane fouling in a full-scale RO wastewater reclamation process: Membrane autopsy and fouling characterization[J]. Journal of Membrane Science, 2018, 563: 843-856.
    [4] GOOSEN M F A, SABLANI S S, ALHINAI H, et al. Fouling of reverse osmosis and ultrafiltration membranes: A critical review[J]. Separation Science and Technology, 2005, 39(10): 2261-2297.
    [5] KHAMBHATY Y, PLUMB J. Characterization of bacterial population associated with a brackish water desalination membrane[J]. Desalination, 2011, 269(1): 35-40.
    [6] LEE J, JUNG J Y, KIM S, et al. Selection of the most problematic biofoulant in fouled RO membrane and the seawater intake to develop biosensors for membrane biofouling[J]. Desalination, 2009, 247(1): 125-136.
    [7] WU B, SUWARNO S R, TAN H S, et al. Gravity-driven microfiltration pretreatment for reverse osmosis (RO) seawater desalination: Microbial community characterization and RO performance[J]. Desalination, 2017, 418: 1-8.
    [8] ZHANG J, YANG M, ZHONG H, et al. Deciphering the factors influencing the discrepant fate of antibiotic resistance genes in sludge and water phases during municipal wastewater treatment[J]. Bioresource Technology, 2018, 265: 310-319.
    [9] TANG F, HU H Y, SUN L J, et al. Fouling characteristics of reverse osmosis membranes at different positions of a full-scale plant for municipal wastewater reclamation[J]. Water Research, 2016, 90: 329-336.
    [10] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
    [11] LI L, LIU M, WU M, et al. Effects of duckweed (Spriodela polyrrhiza) remediation on the composition of dissolved organic matter in effluent of scale pig farms[J]. Journal of Environmental Sciences, 2017, 55: 247-256.
    [12] KIM J, DIGIANO F A, REARDON R D. Autopsy of high-pressure membranes to compare effectiveness of MF and UF pretreatment in water reclamation[J]. Water Research, 2008, 42(3): 697-706.
    [13] YU T, MENG L, ZHAO Q B, et al. Effects of chemical cleaning on RO membrane inorganic, organic and microbial foulant removal in a full-scale plant for municipal wastewater reclamation[J]. Water Research, 2017, 113: 1-10.
    [14] TAN Y J, SUN L J, LI B T, et al. Fouling characteristics and fouling control of reverse osmosis membranes for desalination of dyeing wastewater with high chemical oxygen demand[J]. Desalination, 2017, 419: 1-7.
    [15] HEYLEN K, LEBBE L, DEVOS P. Acidovorax caeni sp. nov. , a denitrifying species with genetically diverse isolates from activated sludge[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(1): 73-77.
    [16] 侯丽媛, 江经纬, 蒋建东, 等. 假黄单胞菌株J1的筛选及木质纤维素降解基因的生物信息学分析[J]. 南京农业大学学报, 2016, 39(4): 573-581.
    [17] 徐慧敏, 闫海, 马松, 等. 鞘氨醇单胞菌USTB-05对微囊藻毒素的生物降解[J]. 中国环境科学, 2014, 34(5): 1316-1321.
    [18] 贾东旭. Sphingopyxis sp. 113P3聚乙烯醇脱氢酶的异源高效表达研究[D]. 无锡: 江南大学, 2013.
    [19] 刘国新. 焦化废水特征污染物的降解与微生物群落的演变过程[D]. 广州: 华南理工大学, 2017.
    [20] 王钢, 岳增刚, 郑利兵, 等. 热电厂双膜法中水深度处理系统运行效果与问题分析[J]. 环境工程学报, 2019, 13(4): 773-783.
  • 加载中
计量
  • 文章访问数:  3936
  • HTML全文浏览数:  3852
  • PDF下载数:  87
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-03
郑利兵, 张春, 夏森, 梁国良, 郁达伟, 王钢, 岳增刚, 魏源送. 热电厂双膜法中水深度处理回用系统膜污染机制分析[J]. 环境工程学报, 2019, 13(5): 1038-1047. doi: 10.12030/j.cjee.201812039
引用本文: 郑利兵, 张春, 夏森, 梁国良, 郁达伟, 王钢, 岳增刚, 魏源送. 热电厂双膜法中水深度处理回用系统膜污染机制分析[J]. 环境工程学报, 2019, 13(5): 1038-1047. doi: 10.12030/j.cjee.201812039
ZHENG Libing, ZHANG Chun, XIA Sen, LIANG Guoliang, YU Dawei, WANG Gang, YUE Zenggang, WEI Yuansong. Membrane fouling characterization and mechanism of a full-scale dual membrane process for advanced treatment and reuse of reclaimed water in a thermal power plant[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1038-1047. doi: 10.12030/j.cjee.201812039
Citation: ZHENG Libing, ZHANG Chun, XIA Sen, LIANG Guoliang, YU Dawei, WANG Gang, YUE Zenggang, WEI Yuansong. Membrane fouling characterization and mechanism of a full-scale dual membrane process for advanced treatment and reuse of reclaimed water in a thermal power plant[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1038-1047. doi: 10.12030/j.cjee.201812039

热电厂双膜法中水深度处理回用系统膜污染机制分析

  • 1. 中国科学院生态环境研究中心,环境模拟与污染控制国家重点联合实验室,北京 100085
  • 2. 中国科学院生态环境研究中心,水污染控制实验室,北京 100085
  • 3. 中国科学院大学,北京 100049
  • 4. 华能济宁电厂,济宁 272121
  • 5. 华能嘉祥发电有限公司,济宁 272400
基金项目:

国家重点研发计划政府间国际科技创新合作重点专项2016YFE0118500

江西省重点研发项目S2017ZPYFE0411国家重点研发计划政府间国际科技创新合作重点专项(2016YFE0118500)

江西省重点研发项目(S2017ZPYFE0411)

摘要: 以某热电厂实际规模的双膜法中水回用系统为考察对象,对膜污染结构、形貌、组成与特征进行了研究。结果表明:污染物以有机-无机-微生物复合形式存在,形成致密的膜污染层,无机物主要以P、S、Ca、Si、Mg为主,存在垂直分布特征;有机污染物以腐殖质类、蛋白质、微生物代谢产物为主,且研究发现RO过程富里酸类物质主要为微生物源。碱性清洗液具有更佳的膜污染清洗效果。通过分析可知:微生物污染是膜污染暴发的关键原因,其以杆菌和球菌为主,且具有显著的垂直分布特征;表层微生物主要是α和β变形菌,底层中γ变形菌丰度显著增加。微生物污染垂直分布的主要原因是杀菌和化学清洗过程的选择作用,γ变形菌是先锋微生物,是形成稳定膜污染层的关键物种。因此,控制微生物的滋生是RO中水深度处理的关键,这个过程主要包括预处理工艺的选择和优化杀菌、阻垢和化学清洗策略等。

English Abstract

参考文献 (20)

返回顶部

目录

/

返回文章
返回