-
由工农业活动产生的重金属污染有着严重威胁人类及动物的生存的毒性作用以及难以修复去除的问题[1]。在众多的重金属污染修复技术中,生物修复技术与物理化学方法相比,具有成本低、无二次污染,对低浓度金属效率更高等优点[2-4],基于生物矿化的微生物诱导碳酸盐沉淀(MICP)修复重金属的技术已成为当前国内外研究的热点[5-7]。
产脲酶微生物能够分泌水解底物尿素的脲酶并在随后的矿化体系中固化重金属离子生成不可溶性碳酸盐,游离态Cd2+能够与脲酶水解底物尿素的产物CO32-形成CdCO3不溶晶体沉淀,从而达到去除镉污染的目的[8]。
在碱性条件下,CO32-与Ca2+形成CaCO3,生物矿化产物CaCO3能够吸附溶液中金属离子并将金属离子固定在其晶体结构中[9],生物矿化过程中微生物分泌的有机物与无机物之间相互作用形成复杂结构的矿物,微生物分泌的有机物质严格控制着无机相的结晶[10]。与无机矿物相比,生物矿物通常具有独特的特性,包括独特的尺寸,结晶度,同位素和微量元素组成[11-12]。成亮等[13]研究发现,细菌体作为异相成核点加速结晶过程,细菌分泌物调控球形碳酸钙的产生,且随着相互间作用程度的增加,球状碳酸钙不规整表面逐步转变为光滑表面。大部分研究者都是采用单一培养矿化去除重金属污染,王瑞兴等[14]发现,产脲酶菌在弱碱条件下可以使Cd2+形成碳酸盐,从而达到固结去除重金属污染的目的。许燕波等[15]利用一株高效产脲酶菌在对Cd污染的土壤进行修复后,使游离态的Cd2+去除率达51%。目前国内外多数研究都以高效产脲酶菌为对象,研究其对重金属的去除效果,但是对MICP技术的矿化产物形成的机理方面研究仍存在不足[16-17]。虽然重金属和产脲酶菌之间的相互作用引起了人们的广泛关注,但是金属污染环境对混合细菌生长的影响仍然很明显。KANG等[18]在研究中发现,混合培养相较于单个细菌具有较好的细菌生长趋势、脲酶活性、以及重金属耐受性,但是未针对细菌的矿化产物进行具体的表征分析。微生物的多样性直接决定着系统的稳定性,可以有效的对多种微生物进行混合培养并将其运用在实际应用中[19]。
本研究运用碳酸盐矿化菌的MICP修复技术,固化重金属,使其形成不溶性的碳酸盐态从而降低其迁移性和生物毒性[20]。通过XRD,SEM等技术对高效产脲酶菌矿化去除重金属Cd以及CdCO3和CaCO3形成共沉淀的机理进行了探究,并研究了混合培养细菌在环境上的应用。
混合菌株诱导碳酸钙沉淀修复Cd污染水
Bioremediation of Cd-contaminated water using calcium carbonate precipitation induced by bacterial mixtures
-
摘要: 利用微生物的酶化作用对水体中重金属镉(Cd)进行矿化固定,以减少交换态重金属在环境中的危害;采用X射线衍射(XRD)、扫描电镜(SEM)、傅里叶变换红外谱(FT-IR)等分析测试手段对2株产脲酶矿化菌株(CZW-1和CZW-3)在单一和混合培养体系下生成的矿化产物进行了表征。结果表明,混合培养能提高细菌脲酶活性、提高细菌对Cd的耐受性及对Cd的去除率。单一培养菌株CZW-1和CZW-3的产脲酶活性分别为17.09 U·mL-1和18.23 U·mL-1,对Cd的耐受性为2 mmol·L-1,对Cd的去除率为78.15%、80.32%;混合培养细菌脲酶活性为20.79 U·mL-1,对Cd耐受性为2.5 mmol·L-1,对Cd的去除率为85.50%。3组矿化体系矿化产物均为晶格掺杂、椭球状的CdCO3和CaCO3,但细菌混合体系矿化产物的粒度更大。混合培养体系由于微生物协同作用对于重金属污染修复具有更好的效果。Abstract: In order to reduce the harm of exchangeable fraction of Cd in the environment, the microbial enzymatic method was used to mineralize and fix heavy metal cadmium (Cd) in water. The mineralized products of two urease-producing strains (CZW-1, CZW-3) in single and co-culture methods were characterized by XRD, SEM, EDS, FTIR and particle size analysis. The results showed that the co-culture stains method can improve the urease activity, the tolerance and the removal rates of Cd. The urease activities of single culture strains CZW-1 and CZW-3 were 17.09 U·mL-1, 18.23 U·mL-1, respectively. The tolerance to Cd was 2 mmol·L-1, and the removal rates of Cd were 78.15%, 80.32%. However, the urease activity of the co-culture strains was 20.79 U·mL-1, the tolerance to Cd was 2.5 mmol·L-1, and the removal rate of Cd was 85.5%. The three groups of mineralized products were CdCO3 and CaCO3 with lattice doping and ellipsoid morphology, but the size of mineralized products in the co-culture system was larger. The co-culture stains had a better effect on the remediation of heavy metal contamination due to the synergetic effect of microorganisms in the co-culture system.
-
Key words:
- carbonate mineralizing bacteria /
- cadmium carbonate /
- minerlization /
- coprecipitation
-
表 1 3组矿化产物元素成分百分比
Table 1. Percentage of elemental composition in three groups of mineralization products
% 元素 A组 B组 C组 质量分数 原子分比 质量分数 原子分比 质量分数 原子分比 C 34.75 53.09 21.45 35.29 33.3 52.75 O 35.67 40.91 39.03 48.2 34.64 41.15 Ca 2.04 0.93 2.87 1.41 1.04 0.49 Cd 25.85 4.22 28.41 4.99 30.13 5.09 -
[1] PREZ-MARN A B, BALLESTER A, GONZ LEZ F, et al. Study of cadmium, zinc and lead biosorption by orange wastes using the subsequent addition method[J]. Bioresource Technology, 2008, 99(17): 8101-8106. doi: 10.1016/j.biortech.2008.03.035 [2] BOGDANOVA E S, MINDLIN S Z, PAKROV E, et al. Mercuric reductase in environmental Gram‐positive bacteria sensitive to mercury[J]. FEMS Microbiology Letters, 2010, 97(1): 95-100. [3] 郑君健, 刘杰, 张学洪, 等.重金属污染土壤植物修复及强化措施研究进展[J].广东农业科学, 2013, 40(18): 159-164. doi: 10.3969/j.issn.1004-874X.2013.18.052 [4] 许朝阳, 柏庭春, 孟涛, 等.铁细菌A生物修复铅铜污染土壤[J].河海大学学报(自然科学版), 2015, 43(6): 569-573. [5] 王继勇, 陈加立, 杨子陆, 等.一株产脲酶菌株的分离及其对Cd2+的去除研究[J].环境科学学报, 2017, 37(8): 2911-2917. [6] KANG C H, SO J S. Heavy metal and antibiotic resistance of ureolytic bacteria and their immobilization of heavy metals[J]. Ecological Engineering, 2016, 97: 304-312. doi: 10.1016/j.ecoleng.2016.10.016 [7] ACHAL V, PAN X, FU Q, et al. Biomineralization based remediation of As(Ⅲ) contaminated soil by Sporosarcina ginsengisoli[J]. Journal of Hazardous Materials, 2012, 201(1): 178-184. [8] 成亮, 钱春香, 王瑞兴, 等.碳酸盐矿化菌株A固结土壤Cd2+的生物矿化过程[J].硅酸盐学报, 2008, 36(1): 215-221. [9] BENEDETTO F D, COSTAGLIOLA P, BENVENUTI M, et al. Arsenic incorporation in natural calcite lattice: Evidence from electron spin echo spectroscopy[J]. Earth and Planetary Science Letters, 2006, 246(3): 458-465. [10] NILS K, LORENZ S, BRUNNER E, et al. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis[J]. Science, 2002, 298(5593): 584-586. doi: 10.1126/science.1076221 [11] IVANOV V, CHU J. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ[J]. Reviews in Environmental Science and Biotechnology, 2008, 7(2): 139-153. doi: 10.1007/s11157-007-9126-3 [12] DEJONG J T, FRITZGES M B, KLAUS, N. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381-1392. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381) [13] 成亮, 钱春香, 王瑞兴, 等.碳酸盐矿化菌调控碳酸钙结晶动力学、形态学的研究[J].功能材料, 2007, 38(9): 1511-1515. doi: 10.3321/j.issn:1001-9731.2007.09.034 [14] 王瑞兴, 钱春香, 吴淼, 等.微生物矿化固结土壤中重金属研究[J].功能材料, 2007, 38(9): 1523-1530. doi: 10.3321/j.issn:1001-9731.2007.09.037 [15] 许燕波, 钱春香, 陆兆文.微生物矿化修复重金属污染土壤[J].环境工程学报, 2013, 7(7): 2763-2768. [16] 李萌, 郭红仙, 程晓辉.土壤中产脲酶微生物分离及对重金属的固化[J].湖北农业科学, 2013, 52(14): 3280-3282. doi: 10.3969/j.issn.0439-8114.2013.14.016 [17] LI M, CHENG X, GUO H. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil[J]. International Biodeterioration and Biodegradation, 2013, 76(1): 81-85. [18] KANG C H, KWON Y J, SO J S. Bioremediation of heavy metals by using bacterial mixtures[J]. Ecological Engineering, 2016, 89(17): 64-69. [19] THOMAS B, NEWMAN J A, SILVERMAN B W, et al. The contribution of species richness and composition to bacterial services[J]. Nature, 2005, 436(7054): 1157-1160. doi: 10.1038/nature03891 [20] MUGWAR A J, HARBOTTLE M J. Toxicity effects on metal sequestration by microbially-induced carbonate precipitation[J]. Journal of Hazardous Materials, 2016, 314: 237-248. doi: 10.1016/j.jhazmat.2016.04.039 [21] 耿玉清, 王冬梅.土壤水解酶活性测定方法的研究进展[J].中国生态农业学报, 2012, 20(4): 387-394. [22] 周礼恺, 张志明.土壤酶活性的测定方法[J].土壤通报, 1980, 5(12): 37-38. [23] 周佳, 孙勇, 唐传球, 等.对二甲氨基苯甲醛比色法测定溶液中的尿素[J].化学与生物工程, 2014, 31(2): 75-78. doi: 10.3969/j.issn.1672-5425.2014.02.021 [24] MASON J A, GREENE R S B, JOECKEL R M. Laser diffraction analysis of the disintegration of aeolian sedimentary aggregates in water[J]. Catena, 2011, 87(1): 107-118. doi: 10.1016/j.catena.2011.05.015 [25] KATIE B, LINGCHONG Y, ARNOLD F H. Engineering microbial consortia: A new frontier in synthetic biology[J]. Trends in Biotechnology, 2008, 26(9): 483-489. doi: 10.1016/j.tibtech.2008.05.004 [26] WALKER W J, MCNUTT R P, MASLANKA C K. The potential contribution of urban runoff to surface sediments of the Passaic River: Sources and chemical characteristics[J]. Chemosphere, 1999, 38(2): 363-377. doi: 10.1016/S0045-6535(98)00186-6 [27] TOBLER D J, CUTHBERT M O, GRESWELL R B, et al. Comparison of rates of ureolysis between Sporosarcina pasteurii and an indigenous groundwater community under conditions required to precipitate large volumes of calcite[J]. Geochimica et Cosmochimica Acta, 2011, 75(11): 3290-3301. doi: 10.1016/j.gca.2011.03.023 [28] LI K, RAMARKRISHNA W. Effect of multiple metal resistant bacteria from con-taminated lake sediments on metal accumulation and plant growth[J]. Journal of Hazardous Materials, 2011, 189(1): 531-539. [29] 张宇楠, 赵文晋, 郭霖, 等.混合菌对表层沉积物中重金属形态及生物有效性的影响[J].环境保护科学, 2010, 36(3): 53-57. doi: 10.3969/j.issn.1004-6216.2010.03.017 [30] 王继勇, 杨子陆, 陈加立, 等.一株产脲酶菌株的分离及其固化土壤中Cd2+的研究[J].中南民族大学学报(自然科学版), 2017, 36(1): 17-20. [31] KANG C H, HAN S H, SHIN Y J, et al. Bioremediation of Cd by microbially induced calcite precipitation[J]. Applied Biochemistry and Biotechnology, 2014, 172(4): 1929-1937. doi: 10.1007/s12010-013-0626-z [32] PHILLIPS A J, GERLACH R, LAUCHNOR E, et al. Engineered applications of ureolytic biomineralization: A review[J]. Biofouling, 2013, 29(6): 715-733. doi: 10.1080/08927014.2013.796550 [33] 尹晓爽, 张慧, 杨文忠, 等.一种假单胞菌诱导CaCO3结晶[J].应用化学, 2010, 27(8): 911-915. [34] TENG H, HU Q, LIAN B, et al. Carbonate biomineralization induced by soil bacterium Bacillus megaterium[J]. Geochimica et Cosmochimica Acta, 2006, 70(22): 5522-5535. doi: 10.1016/j.gca.2006.08.044 [35] BEECH I, HANJAGSIT L, KALAJI M, et al. Chemical and structural characterization of exopolymers produced by Pseudomonas sp. NCIMB 2021 in continuous culture[J]. Microbiology, 1999, 145(6): 1491-1497. doi: 10.1099/13500872-145-6-1491 [36] YANG S L, WEI S. Study on precipitation process of spherical calcium carbonate controlled by polyaspartic acid[J]. Journal of Synthetic Crystals, 2013, 42(7): 1475-1480. [37] PARK S J, PARK Y M, CHUN W Y, et al. Calcite-forming bacteria for compressive strength improvement in mortar[J]. Journal of Microbiology and Biotechnology, 2010, 20(4): 782-788. [38] 成艳, 赵兴青.碳酸盐矿化菌固结Pb2+的生物矿化[J].环境科学研究, 2016, 29(10): 1513-1520.