-
高砷地下水相继在全球70多个国家和地区被发现,影响着约1.5亿人口的饮水安全[1]。智利、墨西哥、中国、阿根廷、美国、匈牙利、印度、孟加拉国和越南都有地下水中的砷含量过高的报道[2]。常规的高砷地下水处理方法有氧化沉淀法、膜分离法、吸附法、阴离子交换法等[3]。通过水处理厂将高砷地下水规模化处理为可饮用的地下水已具有较成熟的技术。但其运行成本高、工艺复杂,很难在我国分散式乡村推广。亟需针对广大农村地区分散供水的特征,研制一种绿色、经济、高效的除砷滤芯用来分散式处理高砷地下水。
铁的氧化物具有较高的表面电荷、比表面积和较好的重金属吸附能力,且负载铁氧化物吸附剂浸出毒性较小,是较为理想的砷吸附材料[4]。活性炭比表面积大,吸附能力强,许多研究利用活性炭负载铁氧化物去除水中砷,取得了良好的效果[5-8]。但是,以上研究均是采用的颗粒或粉末活性炭进行静态吸附实验,未应用于流动状态下高砷地下水的过滤净化,缺乏实用性[5-6, 8]。部分研究采用柱实验模拟净化高砷地下水,但是其过滤净化流量大多控制在50 mL·min-1以下,处理效率难以达到家庭正常供水要求[9-12]。而成型活性炭技术能够对粉末状活性炭原料进行成型加工,避免粉末活性炭易流失的缺陷,提升活性炭净化处理效率,解决改性活性炭材料实际应用的难题[13]。本研究基于铁氧化物对砷的吸附原理,以载铁活性炭为原料,通过成型活性炭烧结加工工艺,制备高效除砷滤芯,保证经滤芯过滤处理后的地下水砷含量低于10 μg·L-1。
载铁活性炭烧结滤芯的制备及其除砷性能
Preparation of sintered iron-loaded activated carbon filter core and its arsenic removal performance
-
摘要: 为实现高砷地下水分布区居民饮用水高效除砷,通过氧化法对椰壳活性炭进行载铁改性处理,采用成型活性炭烧结加工工艺,制备高效除砷滤芯。结果表明:所制得的长度为25.4 cm的除砷滤芯可将初始浓度为500 μg·L-1的高砷水,以1 L·min-1的流量过滤处理为砷含量在10 μg·L-1以下的安全饮用水,使用寿命达260 L,相对于普通活性炭烧结滤芯,使用寿命提高了4倍;通过SEM和EDS分析,改性处理后的活性炭表面负载了铁的氧化物,导致其对砷的吸附能力提高了50%;同时滤芯加工过程中的高压处理使得载铁活性炭颗粒之间呈片状紧密堆叠在一起,含砷溶液透过致密活性炭层中的5~20 μm孔隙时,溶液中的砷与活性炭及铁的氧化物接触而被吸附去除。该滤芯可应用于高砷地下水分布区居民家庭分散式净水除砷。Abstract: In order to remove arsenic efficiently from drinking water of residents living in distribution areas with high arsenic groundwater, an oxidation method was used to modify coconut shell activated carbon with iron coating. Then a filter core with high effective arsenic removal was prepared by using formed activated carbon sintering process. The results showed that the arsenic removal filter core with 25.4 cm length could treat 260 L high arsenic raw water with 500 μg·L-1 initial concentration at 1 L·min-1 flow rate, the arsenic content of filtrated water was below 10 μg·L-1 and met the drinking water standard. In comparison with the sintered filter core with common activated carbon, the service life of the new one increased by 4 times. SEM and EDS analysis indicated that the modified activated carbon surface was loaded with iron oxides, resulting in 50% increase in its arsenic adsorption capacity. The high-pressure treatment during the filter core processing led to the close stack in a sheet form for the iron-loaded activated carbon. When arsenic-contained solution passed through the pores with size of 5~20 μm in the compact activated carbon layer, arsenic could meet the activated carbon and loaded iron oxides, and was adsorbed and removed from water accordingly. The filter core can be used to remove arsenic from decentralized drinking water of residents living in distribution areas with high arsenic groundwater.
-
表 1 活性炭样品EDS能谱分析测试结果
Table 1. Results of EDS spectrum analysis of activated carbon samples
% 元素 改性前 改性后 过滤砷溶液后 C 94.09 32.75 44.92 O 5.65 39.98 17.69 Fe 0 23.26 35.22 As 0.02 0.06 0.78 Na 0.02 2.19 0.37 Cl 0.15 1.17 0.12 Si 0.10 0.59 0.90 -
[1] MUDHOO A, SHARMA S K, GARG V K, et al. Arsenic: An overview of applications, health, and environmental concerns and removal processes[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(5): 435-519. doi: 10.1080/10643380902945771 [2] LAGE C R, NAYAK A, KIM C H. Arsenic ecotoxicology and innate immunity[J]. Integrative and Comparative Biology, 2006, 46(6): 1040-1054. doi: 10.1093/icb/icl048 [3] LUONG V T, CANAS KURZ E E, HELLRIEGEL U, et al. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects[J]. Water Research, 2018, 133: 110-122. doi: 10.1016/j.watres.2018.01.007 [4] 李昱秀, 张焕祯, 李海燕.负载铁氧化物吸附剂水处理除砷研究进展[J].水处理技术, 2017, 43(7): 5-11. [5] 肖静.载铁活性炭吸附剂的制备及除砷机理研究[D].湘潭: 湘潭大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10530-1013379914.htm [6] 肖静, 田凯勋, 高怡.载铁活性炭吸附剂的制备及除砷(Ⅲ)性能研究[J].工业水处理, 2012, 32(11): 28-32. [7] 孙竹梅, 蒋明磊, 杜冬云.载Fe活性炭纤维除As(Ⅴ)的动力学及机理[J].离子交换与吸附, 2013, 29(4): 359-369. [8] GU Z, FANG J, DENG B. Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal[J]. Environmental Science & Technology, 2005, 39(10): 3833-3843. [9] 袁涛, 罗启芳.运用涂铁砂粒进行分散式饮水除砷的效果[J].环境科学, 2001, 22(3): 25-29. [10] 赵月朝, 陈亚妍, 林少彬, 等.饮水复合材料除砷滤芯的研制与效果评价[J].卫生研究, 2004, 33(4): 413-415. doi: 10.3969/j.issn.1000-8020.2004.04.008 [11] 龙小燕.活性炭负载Fe/Ti改性及去除水体砷的效果和机理研究[D].武汉: 华中农业大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10504-1012457404.htm [12] 赵月朝, 陈亚妍, 林少彬, 等.负载金属饮水除砷材料的研究[J].卫生研究, 2004, 33(5): 550-552. doi: 10.3969/j.issn.1000-8020.2004.05.009 [13] 闫新龙, 刘欣梅, 乔柯, 等.成型活性炭制备技术研究进展[J].化工进展, 2008, 27(12): 1868-1872. doi: 10.3321/j.issn:1000-6613.2008.12.002 [14] 中华人民共和国环境保护部.水质汞、砷、硒、铋和锑的测定原子荧光法: HJ 694-2014[S].北京: 中国环境科学出版社, 2014. [15] 中华人民共和国卫生部, 中国国家标准化管理委员会.生活饮用水卫生标准: GB 5749-2006[S].北京: 中国标准出版社, 2006. [16] 沈雁峰, 孙殿军, 赵新华, 等.中国饮水型地方性砷中毒病区和高砷区水砷筛查报告[J].中国地方病学杂志, 2005, 24(2): 56-59. [17] XIE S, YUAN S, LIAO P, et al. Iron-anode enhanced sand filter for arsenic removal from tube well water[J]. Environmental Science & Technology, 2016, 51(2): 889-896.