炼铁烧结除尘灰湿法脱除模拟烟气中的SO2
Wet desulfurization from simulated flue gas by iron smelting sintering dust
-
摘要: 为了考察炼铁烧结除尘灰作为脱硫剂的效果,研究了湿法脱硫过程中固液比、氧气含量、吸收剂温度、气体流速、进口SO2质量浓度、搅拌强度等影响因素对脱除效率的影响规律。结果表明,最佳反应温度为25 ℃;随着温度升高,SO2溶解度降低,吸收液对SO2吸收能力降低;气体流量增加,SO2在吸收剂中停留时间变短,导致脱除率降低;固液比增加,气固接触概率也随之增大,SO2脱除率也增大;进口SO2质量浓度的提高导致液相中氢氧根消耗加剧,使反应速率减慢,不利于对SO2的去除。同时发现,SO2浓度增加则溶解分数减小,吸收率也会随之降低;搅拌速率的增加使得气泡破碎加剧,增大气液接触面积,使除尘灰充分悬浮在液相中,与溶液中的SO2迅速反应,有利于SO2的吸收。O2含量增加,有利于O2的溶解,增加了化学反应的推动力,有利于SO2吸收反应的进行。除尘灰对含二氧化硫气体具有较好的脱硫效果,有一定的应用前景。Abstract: In this study, the produced dust from iron-sintering work was used as the desulfurizer. Then the effects of factors in the wet desulphurization process, such as solid-liquid ratio, oxygen content, absorbent temperature, gas flow rate, inlet SO2 mass concentration and stirring intensity on SO2 removal efficiency were studied. The results showed that the optimum desulphurization temperature was 25 ℃, and with the increase of temperature, SO2 solubility and its absorption capacity by the absorption solution also dropped. As the gas flow rate increased, SO2 retention time in absorption solution decreased, then SO2 removal efficiency was also reduced accordingly. Meanwhile, an increased solid-liquid ratio could lead to the improvement of gas solid contact probability SO2 removal ratio. However, the rise of inlet SO2 mass concentration could increase the OH- consumption in liquid phase, and slowed the wet desulphurization reaction rate which was against the SO2 removal. Meanwhile, the rise of SO2 concentration also caused the decrease of SO2 dissolution ratio and adsorption ratio. The increase of the stirring intensity intensified the bubble breakage, enlarged the gas-liquid contact area, then the iron smelting sintering dust could fully suspend in the liquid phase and rapidly reacted with SO2, thus, the SO2 absorption was strengthened. Furthermore, the increase of oxygen concentration was conducive to its dissolution, the driving force of the chemical reaction was enhanced, and SO2 absorption reaction was facilitated. Dust from iron-sintering work has showed a considerable desulfurization efficiency and some application prospects.
-
[1] 宁平. 工业废气液相催化氧化净化技术[M]. 北京: 中国环境科学出版社, 2012: 332. [2] 赵健植, 金保升, 仲兆平, 等. 石灰石/石膏湿法烟气脱硫技术的模糊综合评价[J]. 锅炉技术, 2006, 37(6): 70-80. [3] 陈绍敏. 珞璜电厂湿式石灰石-石膏法脱硫系统运行中存在的问题及其分析[J]. 热力发电, 2004, 33(7): 46-48 [4] 朱保山. 燃煤锅炉大气污染物净化技术手册[M]. 北京: 中国电力出版社, 2006: 10. [5] 钱堃. 新钢11号高炉炸瘤生产实践[J]. 中国锰业, 2018, 36(3): 146-158. [6] 李石雷. 磷矿浆脱除硫化氢实验研究[J]. 昆明理工大学学报, 2017, 42(5): 105-111. [7] 卓广澜, 陈银飞. 脱除SO2的催化方法研究进展[J]. 化工生产与技术, 1999(1): 18-32. [8] 刘卉卉. 低浓度SO2磷矿浆液相催化氧化净化研究[D]. 昆明: 昆明理工大学, 2005. [9] 刘卉卉, 宁平. 磷矿浆催化氧化湿法脱硫研究(Ⅱ)[J]. 化工矿物与加工, 2006, 34(2): 10-12. [10] 焦倩, 袁守谦, 许传才, 等. 铁合金渣用于钢水脱硫的实验研究[J]. 铁合金, 2010, 41(6): 18-21. [11] 张东力, 王晓鸣, 邹宗树, 等. LF泡沫精炼渣脱硫动力学的实验研究[J]. 钢铁研究, 2003, 31(3): 16-18. [12] 马先林, 付全军, 罗蜀峰, 等. 湿法磷酸脱硫工艺研究[J]. 磷肥与复肥, 2015, 30(4): 7-9. [13] RAYMUNDO-PINERO E, CAZORLA-AMOROS D, MORALLON E. Catalytic oxidation of sulfur dioxide by activated carbon: A physical chemistry experiment[J]. Journal of Chemical Education, 1999, 76(7): 958-961. [14] 马豫, 于丽丽, 唐晓龙, 等. 低浓度硫化氢液相催化氧化动力学实验研究[J]. 昆明理工大学学报(理工版), 2009, 34(3): 79-82. [15] SHI Y H,FAN M H. Reaction kinetics for the catalytic oxidation of sulfur dioxide with microscale and nanoscale iron oxides[J]. Industrial & Engineering Chemistry Research, 2007, 51(3): 1158-1165. [16] 张玉, 周集体, 王栋, 等. FeSO4溶液催化氧化脱除烟气中SO2研究[J]. 大连理工大学学报, 2004, 44(1): 60-64. [17] 孙文寿, 蔡杰, 陈侠. 煤浆催化氧化法烟气脱硫研究[D]. 青岛: 青岛大学, 2006. [18] 汤争光, 蒋文举. 软锰矿催化氧化二氧化硫的过程与机理研究[J]. 环境科学与技术2008, 31(2): 13-37. [19] 朱晓帆, 涂海燕. 搅拌强度对软锰矿浆湿法脱硫反应的影响[J]. 四川大学学报(工程科学版), 2002, 34(1): 121-123. [20] 郭翠香, 肖维鹏. 软锰矿催化氧化脱除烟气中的SO2[J]. 污染防治技术, 2003, 16(4): 66-67.
计量
- 文章访问数: 3585
- HTML全文浏览数: 3535
- PDF下载数: 177
- 施引文献: 0