稀土Nd改性纳米TiO2-NTs/SnO2-Sb电极的制备、结构及性能

杨莉莎, 刘俊峰, 黄琳琳, 郭嘉钰, 冯玉杰, LOGANBruce. 稀土Nd改性纳米TiO2-NTs/SnO2-Sb电极的制备、结构及性能[J]. 环境工程学报, 2018, 12(8): 2161-2169. doi: 10.12030/j.cjee.201803190
引用本文: 杨莉莎, 刘俊峰, 黄琳琳, 郭嘉钰, 冯玉杰, LOGANBruce. 稀土Nd改性纳米TiO2-NTs/SnO2-Sb电极的制备、结构及性能[J]. 环境工程学报, 2018, 12(8): 2161-2169. doi: 10.12030/j.cjee.201803190
YANG Lisha, LIU Junfeng, HUANG Linlin, GUO Jiayu, FENG Yujie, LOGAN Bruce. Preparation, structure and performance of nano-scale Nd doped SnO2-Sb electrode based on TiO2 nanotubes[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2161-2169. doi: 10.12030/j.cjee.201803190
Citation: YANG Lisha, LIU Junfeng, HUANG Linlin, GUO Jiayu, FENG Yujie, LOGAN Bruce. Preparation, structure and performance of nano-scale Nd doped SnO2-Sb electrode based on TiO2 nanotubes[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2161-2169. doi: 10.12030/j.cjee.201803190

稀土Nd改性纳米TiO2-NTs/SnO2-Sb电极的制备、结构及性能

  • 基金项目:

    城市水资源与水环境国家重点实验室(哈尔滨工业大学)自主课题(2018DX01)

    黑龙江省科技攻关项目(WB10A401)

Preparation, structure and performance of nano-scale Nd doped SnO2-Sb electrode based on TiO2 nanotubes

  • Fund Project:
  • 摘要: 采用溶剂热法制备了稀土Nd掺杂TiO2-NTs/SnO2-Sb电极,以苯酚作为典型有机物,考察了电极组成、结构与电极电催化效能的关系,实验结果表明,Nd的掺杂量对电极电催化性能有较大的影响,当前驱液中Nd/Sn原子摩尔百分比为3%时,电极的电催化活性最佳,对苯酚浓度及TOC的降解速率较空白电极(Nd0%)提高了60%及52%。利用SEM及XRD分析方法对所制备的电极进行了形貌及晶形结构的表征,并计算了电极表面SnO2晶胞参数以及平均粒径,结果显示,适量地掺杂Nd元素后,电极表面更加致密,SnO2平均粒径变小。通过XPS分析电极表面元素组成,并计算电极表面吸附氧含量,结果表明,由于Nd元素的存在,降低了涂层中晶格氧(Olat)的含量,减弱了电子的吸引作用,促使了Sn4+周围电子云密度升高,从而电极表面Sn元素特征衍射峰表现为向低结合能方向偏移。与空白电极(Nd0%)相比,改性后的电极(Nd3%)涂层表面Sb含量下降,且吸附氧(Oads)含量上升,为空白电极的1.6倍。EPR测试结果进一步证实了改性后电极性能提高的机制,Nd元素的引入,增加了电极涂层表面氧空位的浓度,使得电极涂层表面各元素的化学环境发生改变。掺杂改性后,电极的析氧电位以及产羟基自由基能力均得以提升,从而促使电极催化活性大大增强。
  • 加载中
  • [1] FENG Y J, LI X.Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution[J].Water Research, 2003, 37(10): 2399-2407 10.1016/S0043-1354(03)00026-5
    [2] LI X Y, CUI Y H, FENG Y J, et al.Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes[J].Water Research, 2005, 39(10): 1972-1981 10.1016/j.watres.2005.02.021
    [3] FENG Y J, YANG L S, LIU J F, et al.Electrochemical technologies for wastewater treatment and resource reclamation[J].Environmental Science: Water Research & Technology, 2016, 2(5): 800-831 10.1039/C5EW00289C
    [4] SIMOND O, SCHALLER V, COMNINELLIS C.Theoretical model for the anodic oxidation of organics on metal oxide electrodes[J].Electrochimica Acta, 1997, 42 (13/14): 2009-2012 10.1016/S0013-4686(97)85475-8
    [5] 胡承志,刘会娟,曲久辉.电化学水处理技术研究进展[J].环境工程学报,2018,12(3):677-696 10.12030/j.cjee.201801179
    [6] 孙天宇,朱兆连,牛荘,等.低浓度三氯生废水的电化学去除效能[J].环境工程学报,2018,12(3):824-829 10.12030/j.cjee.201707239
    [7] XU H, ZHANG Q, YAN W, et al.A composite Sb-doped SnO2 electrode based on the TiO2 nanotubes prepared by hydrothermal synthesis[J].International Journal of Electrochemical Science, 2011, 6(12): 6639-6652
    [8] YANG L S, LIU J F, HUANG L L, et al.Fabrication of nano-structured stacked sphere SnO2-Sb electrode with enhanced performance using a situ solvothermal synthesis method[J].Journal of the Electrochemical Society, 2018,165:E1-E6 10.1149/2.0711805jes
    [9] ZHAO G, CUI X, LIU M, et al.Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode[J].Environmental Science & Technology, 2009, 43(5): 1480-1486 10.1021/es802155p@proofing
    [10] CHEN G, CHEN X, YUE P.Electrochemical behavior of novel Ti/IrOx-Sb2O5-SnO2 anodes[J].Journal of Physical Chemistry B, 2002, 106(17): 4364-4369 10.1021/jp013547o
    [11] ZHANG L C, XU L, HE J, et al.Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration[J].Electrochimica Acta, 2014, 117(4):192-201 10.1016/j.electacta.2013.11.117
    [12] 冯玉杰, 崔玉虹, 王建军.Dy改性SnO2-Sb电催化电极的制备及表征[J]. 无机化学学报, 2005,21(6):836-841
    [13] YANG S Y, CHOO Y S, KIM S, et al.Boosting the electrocatalytic activities of SnO2 electrodes for remediation of aqueous pollutants by doping with various metals[J].Applied Catalysis B: Environmental, 2012,111(12): 317-325 10.1016/j.apcatb.2011.10.014
    [14] HU F P, DONG Z Q, CUI X W, et al.Improved SnO2-Sb2O4 based anode modified with Cr3C2 and CNT for phenol oxidation[J].Electrochimica Acta, 2011,56(3): 1576-1580 10.1016/j.electacta.2010.10.037
    [15] CUI Y H, FENG Y J, LIU Z Q.Influence of rare earths doping on the structure and electro-catalytic performance of Ti/Sb-SnO2 electrodes[J].Electrochimica Acta, 2009, 54(21): 4903-4909 10.1016/j.electacta.2009.04.041
    [16] FENG Y J, CUI Y H, LOGAN B E, et al.Performance of Gd-doped Ti-based Sb-SnO2 anodes for electrochemical destruction of phenol[J].Chemosphere,2008,70(9):1629-1636 10.1016/j.chemosphere.2007.07.083
    [17] FENG Y J, CUI Y H, LIU J F, et al.Factors affecting the electro-catalytic characteristics of Eu doped SnO2/Sb electrode[J].Journal of Hazardous Materials,2010,178(1):29-34 10.1016/j.jhazmat.2009.12.101
    [18] 崔玉虹,刘正乾,刘志刚,等.Ce掺杂钛基二氧化锡电极的制备及电催化性能研究[J].功能材料,2004,35(z1):2035-2039
    [19] COMNINELLIS C, PULGARIN C.Anodic oxidation of phenol for wastewater treatment[J].Journal of Applied Electrochemistry, 1991,21(8):703-708 10.1002/cjce.5450590106
    [20] GUO Y, DUAN T G, CHENY,et al.Solvothermal fabrication of three-dimensionally sphere-stacking Sb-SnO2 electrode based on TiO2 nanotube arrays[J].Ceramics International,2015,41(7):8723-8729
    [21] 刘峻峰.钛基Sb掺杂SnO2纳米涂层电极的制备及性能研究[D].哈尔滨:哈尔滨工业大学, 2008
    [22] 刘峻峰,冯玉杰, 孙丽欣,等.钛基SnO2纳米涂层电催化电极的制备及性能研究[J].材料科学与工艺, 2006,14(2): 200-203
  • 加载中
计量
  • 文章访问数:  3699
  • HTML全文浏览数:  3388
  • PDF下载数:  170
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-08-17

稀土Nd改性纳米TiO2-NTs/SnO2-Sb电极的制备、结构及性能

  • 1. 哈尔滨工业大学环境学院,城市水资源与水环境国家重点实验室,哈尔滨 150090
  • 2. 宾夕法尼亚州立大学土木与环境工程系,美国宾夕法尼亚州 16802
基金项目:

城市水资源与水环境国家重点实验室(哈尔滨工业大学)自主课题(2018DX01)

黑龙江省科技攻关项目(WB10A401)

摘要: 采用溶剂热法制备了稀土Nd掺杂TiO2-NTs/SnO2-Sb电极,以苯酚作为典型有机物,考察了电极组成、结构与电极电催化效能的关系,实验结果表明,Nd的掺杂量对电极电催化性能有较大的影响,当前驱液中Nd/Sn原子摩尔百分比为3%时,电极的电催化活性最佳,对苯酚浓度及TOC的降解速率较空白电极(Nd0%)提高了60%及52%。利用SEM及XRD分析方法对所制备的电极进行了形貌及晶形结构的表征,并计算了电极表面SnO2晶胞参数以及平均粒径,结果显示,适量地掺杂Nd元素后,电极表面更加致密,SnO2平均粒径变小。通过XPS分析电极表面元素组成,并计算电极表面吸附氧含量,结果表明,由于Nd元素的存在,降低了涂层中晶格氧(Olat)的含量,减弱了电子的吸引作用,促使了Sn4+周围电子云密度升高,从而电极表面Sn元素特征衍射峰表现为向低结合能方向偏移。与空白电极(Nd0%)相比,改性后的电极(Nd3%)涂层表面Sb含量下降,且吸附氧(Oads)含量上升,为空白电极的1.6倍。EPR测试结果进一步证实了改性后电极性能提高的机制,Nd元素的引入,增加了电极涂层表面氧空位的浓度,使得电极涂层表面各元素的化学环境发生改变。掺杂改性后,电极的析氧电位以及产羟基自由基能力均得以提升,从而促使电极催化活性大大增强。

English Abstract

参考文献 (22)

目录

/

返回文章
返回