猪粪与酒糟混合厌氧发酵的产甲烷和三元pH缓冲体系特征

王子月, 张长平, 孟晓山, 张俊亚, 王亚炜, 魏源送. 猪粪与酒糟混合厌氧发酵的产甲烷和三元pH缓冲体系特征[J]. 环境工程学报, 2018, 12(8): 2379-2387. doi: 10.12030/j.cjee.201801096
引用本文: 王子月, 张长平, 孟晓山, 张俊亚, 王亚炜, 魏源送. 猪粪与酒糟混合厌氧发酵的产甲烷和三元pH缓冲体系特征[J]. 环境工程学报, 2018, 12(8): 2379-2387. doi: 10.12030/j.cjee.201801096
WANG Ziyue, ZHANG Changping, MENG Xiaoshan, ZHANG Junya, WANG Yawei, WEI Yuansong. Characteristics of methane production and ternary pH buffer system in anaerobic co-digestion of swine manure and distiller’s grains[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2379-2387. doi: 10.12030/j.cjee.201801096
Citation: WANG Ziyue, ZHANG Changping, MENG Xiaoshan, ZHANG Junya, WANG Yawei, WEI Yuansong. Characteristics of methane production and ternary pH buffer system in anaerobic co-digestion of swine manure and distiller’s grains[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2379-2387. doi: 10.12030/j.cjee.201801096

猪粪与酒糟混合厌氧发酵的产甲烷和三元pH缓冲体系特征

  • 基金项目:

    国家水体污染控制与治理科技重大专项(2015ZX07203-007,2017ZX07102)

Characteristics of methane production and ternary pH buffer system in anaerobic co-digestion of swine manure and distiller’s grains

  • Fund Project:
  • 摘要: 以猪粪和酒糟为发酵原料,考察了5种混合比例(猪粪与酒糟总固体含量(TS)比100:0、95:5、90:10、80:20、50:50)下混合厌氧发酵的产甲烷特性,并研究了其三元pH缓冲体系特征。结果表明,混合比例显著影响猪粪与酒糟混合发酵的甲烷产率(P-1(VSadded)),比纯猪粪厌氧发酵的甲烷产率提高了6.2%。纯猪粪、猪粪与酒糟TS比为95:5的2组累积产甲烷量符合修正Gompertz方程(R2=0.993 3; R2=0.989 6),无明显滞后期。酒糟含有的大量硫酸盐影响了甲烷产量。VFAs-氨氮-TIC三元pH缓冲体系特征的研究结果表明,由于酒糟的碱度严重缺失,酒糟添加量过大时,体系偏离合适的pH缓冲区域,体系酸度过高,抑制了厌氧发酵的进行。
  • 加载中
  • [1] 桑磊,周丽娜,邓欢. 畜禽养殖业废水处理技术研究与应用[J]. 中国资源综合利用, 2010,28(2): 26-30
    [2] 陈梅雪,杨敏,贺泓. 日本畜禽产业排泄物处理与循环利用的现状与技术[J]. 环境工程学报, 2005,6(3): 5-11
    [3] CHAE K J, JANG A, YIM S K,et al.The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure[J].Bioresource Technology, 2008,99(1): 1-6 10.1016/j.biortech.2006.11.063
    [4] ZHOU J, ZHANG R, LIU F,et al.Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure[J].Bioresource Technology, 2016,217: 44-49 10.1016/j.biortech.2016.02.077
    [5] KAPARAJU P, BUENDIA I, ELLEGAARD L,et al.Effects of mixing on methane production during thermophilic anaerobic digestion of manure: Lab-scale and pilot-scale studies[J].Bioresource Technology, 2008,99(11): 4919 10.1016/j.biortech.2007.09.015
    [6] HANSEN K H, ANGELIDAKI I, AHRING B K.Anaerobic digestion of swine manure: Inhibition by ammonia[J].Water Research, 1998,32(1): 5-12 10.1016/S0043-1354(97)00201-7
    [7] BUJOCZEK G, OLESZKIEWICZ J, SPARLING R,et al.High solid anaerobic digestion of chicken manure[J].Journal of Agricultural Engineering Research, 2000,76(1): 51-60 10.1006/jaer.2000.0529
    [8] NAKAKUBO R, MOLLER H B, NIELSEN A M,et al.Ammonia inhibition of methanogenesis and identification of process indicators during anaerobic digestion[J].Environmental Engineering Science, 2008,25(10): 1487-1496 10.1089/ees.2007.0282
    [9] 王太涛,赵龙,张盼,等. 酒糟沼气发酵的基础探究[J]. 中国沼气, 2017,35(1): 60-62
    [10] 孙全平,邱凌,李自林,等. 酒糟与猪粪混合厌氧发酵产沼气的研究[J]. 西北农业学报, 2013,22(3): 199-204
    [11] WANG L H, WANG Q H, CAI W W,et al.Influence of mixing proportion on the solid-state anaerobic co-digestion of distiller's grains and food waste[J].Biosystems Engineering, 2012,112(2): 130-137 10.1016/j.biosystemseng.2012.03.006
    [12] 蔡玮玮,张笑,王利红,等. 接种比例对酒糟与餐厨垃圾混合厌氧发酵产沼气的影响[J]. 环境工程, 2013,31(2): 99-103
    [13] 卜凡,谢丽,王雯,等. 添加木薯酒糟对市政污泥厌氧发酵产氢产甲烷的影响[J]. 中国给水排水, 2016,32(11): 40-45
    [14] 杜连柱,杨继东,张克强,等. 厌氧消化过程氨抑制研究进展[J]. 可再生能源, 2012,30(4): 75-79
    [15] SENSAI P, THANGAMANI A, VISVANATHAN C.Thermophilic co-digestion feasibility of distillers grains and swine manure: Effect of C/N ratio and organic loading rate during high solid anaerobic digestion (HSAD)[J].Environmental Technology, 2014,35(17/18/19/20): 2569 10.1080/09593330.2014.913688
    [16] MAO C, FENG Y, WANG X,et al.Review on research achievements of biogas from anaerobic digestion[J].Renewable & Sustainable Energy Reviews, 2015,45: 540-555
    [17] 郁达伟.厌氧膜生物反应器处理高浓度有机废水及其优化研究[D].北京:中国科学院大学, 2016
    [18] 国家环境保护总局. 水和废水监测分析方法[M]. 4版.北京: 中国环境科学出版社, 2002
    [19] JIMENEZ J, VEDRENNE F, DENIS C,et al.A statistical comparison of protein and carbohydrate characterisation methodology applied on sewage sludge samples[J].Water Research, 2013,47(5): 1751-1762 10.1016/j.watres.2012.11.052
    [20] KAFLE G K, CHEN L.Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models[J].Waste Management, 2016,48(1): 492-502 10.1016/j.wasman.2015.10.021
    [21] DONOSO-BRAVO A, PEREZ-ELVIRA S I, FDZ-POLANCO F.Application of simplified models for anaerobic biodegradability tests.Evaluation of pre-treatment processes[J].Chemical Engineering Journal, 2010,160(2): 607-614
    [22] MAJD S S, ABDOLI M A, KARBASSI A, et al.Effect of physical and chemical operating parameters on anaerobic digestion of manure and biogas production: A review[J].Journal of Environmental Health and Sustainable Development,2017, 2(1):231-244
    [23] 陈芬,余高,武春燕,等. 外源Cu、Zn对猪粪与玉米秸秆混合物料产甲烷特性影响机理分析[J]. 环境科学学报, 2016,36(12): 4428-4436
    [24] VIEITEZ E R, GHOSH S.Biogasification of solid wastes by two-phase anaerobic fermentation[J].Biomass & Bioenergy, 1999,16(5): 299-309
    [25] 涂保华, 张洁, 张雁秋. 对厌氧消化中硫化氢毒性的控制[J]. 污染防治技术, 2003(4): 57-59
    [26] MIZUNO O, LI Y Y, NOIKE T.The behavior of sulfate-reducing bacteria in acidogenic phase of anaerobic digestion[J].Water Research, 1998,32(5): 1626-1634 10.1016/S0043-1354(97)00372-2
    [27] NIELSEN P H.Biofilm dynamics and kinetics during high-rate sulfate reduction under anaerobic conditions[J].Applied & Environmental Microbiology, 1987,53(1): 27-32
    [28] KHAN A W, TROTTIER T M.Effect of sulfur-containing compounds on anaerobic degradation of cellulose to methane by mixed cultures obtained from sewage sludge[J].Applied & Environmental Microbiology, 1978,35(6): 1027-1034
    [29] YU H Q, FANG H H.Acidogenesis of gelatin-rich wastewater in an upflow anaerobic reactor: influence of pH and temperature[J].Water Research, 2003,37(1): 55-66 10.1016/S0043-1354(02)00256-7
    [30] 张彤,翟宁宁,王晓娇,等. 初始pH值和物料配比对高温混料厌氧发酵进程的影响[J]. 环境科学学报, 2016,36(7): 2571-2579
  • 加载中
计量
  • 文章访问数:  2490
  • HTML全文浏览数:  2190
  • PDF下载数:  162
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-08-17

猪粪与酒糟混合厌氧发酵的产甲烷和三元pH缓冲体系特征

  • 1. 河北工业大学能源与环境工程学院,天津 300401
  • 2. 中国科学院生态环境研究中心,环境模拟与污染控制国家重点联合实验室,北京 100085
  • 3. 中国矿业大学北京化学与环境工程学院,北京 100083
  • 4. 中国科学院大学,北京 100049
基金项目:

国家水体污染控制与治理科技重大专项(2015ZX07203-007,2017ZX07102)

摘要: 以猪粪和酒糟为发酵原料,考察了5种混合比例(猪粪与酒糟总固体含量(TS)比100:0、95:5、90:10、80:20、50:50)下混合厌氧发酵的产甲烷特性,并研究了其三元pH缓冲体系特征。结果表明,混合比例显著影响猪粪与酒糟混合发酵的甲烷产率(P-1(VSadded)),比纯猪粪厌氧发酵的甲烷产率提高了6.2%。纯猪粪、猪粪与酒糟TS比为95:5的2组累积产甲烷量符合修正Gompertz方程(R2=0.993 3; R2=0.989 6),无明显滞后期。酒糟含有的大量硫酸盐影响了甲烷产量。VFAs-氨氮-TIC三元pH缓冲体系特征的研究结果表明,由于酒糟的碱度严重缺失,酒糟添加量过大时,体系偏离合适的pH缓冲区域,体系酸度过高,抑制了厌氧发酵的进行。

English Abstract

参考文献 (30)

目录

/

返回文章
返回