纳米二氧化铈上活性氧物种的氧空穴团簇捕集位点

王少莘, 解文, 余运波. 纳米二氧化铈上活性氧物种的氧空穴团簇捕集位点[J]. 环境工程学报, 2018, 12(4): 1120-1127. doi: 10.12030/j.cjee.201712186
引用本文: 王少莘, 解文, 余运波. 纳米二氧化铈上活性氧物种的氧空穴团簇捕集位点[J]. 环境工程学报, 2018, 12(4): 1120-1127. doi: 10.12030/j.cjee.201712186
WANG Shaoxin, XIE Wen, YU Yunbo. Oxygen vacancy clusters as trapping sites for active oxygen species on nanoceria[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1120-1127. doi: 10.12030/j.cjee.201712186
Citation: WANG Shaoxin, XIE Wen, YU Yunbo. Oxygen vacancy clusters as trapping sites for active oxygen species on nanoceria[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1120-1127. doi: 10.12030/j.cjee.201712186

纳米二氧化铈上活性氧物种的氧空穴团簇捕集位点

  • 基金项目:

    天津市科技计划项目(16YFXTSF00290)

    国家自然科学基金资助项目(21673277)

    国家重点研发计划(2017YFC0211105)

Oxygen vacancy clusters as trapping sites for active oxygen species on nanoceria

  • Fund Project:
  • 摘要: 二氧化铈(CeO2)是一种性能优异的催化材料,已广泛应用于大气污染物的控制,这与其优异的储放氧性能即氧空穴的形成、消除相关;研究氧空穴在上氧物种的形成及活性对设计高效的铈基催化剂具有重要意义。X射线光电子能谱(XPS)、正电子湮没寿命谱(PAS)、氢气-程序升温还原(H2-TPR)研究结果表明,不同形貌的CeO2纳米材料上氧空穴团簇大小、相对强度、单位面积上Ce3+浓度的乘积与高活性氧物种的量之间呈线性相关,这一定量关系揭示氧空穴团簇是CeO2纳米材料上活性氧物种的捕集位点,对认识CeO2催化作用机制具有理论指导意义。
  • 加载中
  • [1] YAO H C, YAO Y F.Ceria in automotive exhaust catalysts: I.Oxygen storage[J].Journal of Catalysis, 1984, 86(2):254-265 10.1016/0021-9517(84)90371-3
    [2] TROVARELLI A.Catalytic properties of ceria and CeO2-containing materials[J].Catalysis Reviews: Science and Engineering, 1996, 38(4):439-520 10.1080/01614949608006464
    [3] DELUGA G A, SALGE J R, SCHMIDT L D, et al.Renewable hydrogen from ethanol by autothermal reforming[J].Science, 2004, 303(5660):993-997 10.1126/science.1093045
    [4] LIU S, WU X D, LIU W, et al.Soot oxidation over CeO2 and Ag/CeO2: Factors determining the catalyst activity and stability during reaction[J].Journal of Catalysis, 2016, 337: 188-198 10.1016/j.jcat.2016.01.019
    [5] ESCH F, FABRIS S, ZHOU L, et al.Electron localization determines defect formation on ceria substrates[J].Science, 2005, 309(5735):752-755 10.1126/science.1111568
    [6] PAIER J, PENSCHKE C, SAUER J.Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment[J].Chemical Reviews, 2013, 113(6):3949-3985 10.1021/cr3004949
    [7] N?RENBERG H, BRIGGS G A D.Defect structure of nonstoichiometric CeO2(111) surfaces studied by scanning tunneling microscopy[J].Physical Review Letters, 1997, 79(21):4222-4225 10.1103/physrevlett.79.4222
    [8] NAMAI Y, FUKUI K, IWASAWA Y.Atom-resolved noncontact atomic force microscopic observations of CeO2(111) surfaces with different oxidation states: Surface structure and behavior of surface oxygen atoms[J].Journal of Physical Chemistry B, 2003, 107(42):11666-11673 10.1021/jp030142q
    [9] LI H Y, WANG H F, GONG X Q, et al.Multiple configurations of the two excess 4f electrons on defective CeO2(111): Origin and implications[J].Physical Review B: Condensed Matter, 2009, 79(19):193401 10.1103/PhysRevB.79.193401
    [10] ZHANG C, MICHAELIDES A, KING D A, et al.Oxygen vacancy clusters on ceria: Decisive role of cerium f electrons[J].Physical Review B: Condensed Matter, 2009, 79(7):075433 10.1103/PhysRevB.79.075433
    [11] ZHANG F, WANG P, KOBERSTEIN J, et al.Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy[J].Surface Science, 2004, 563(1/2/3):74-82 10.1016/j.susc.2004.05.138
    [12] XU J H, HARMER J, LI G Q, et al.Size dependent oxygen buffering capacity of ceria nanocrystals[J].Chemical Communications, 2010, 46(11):1887-1889 10.1039/B923780A
    [13] LAWRENCE N J, BREWER J R, WANG L, et al.Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation[J].Nano Letters, 2011, 11(7):2666-2671 10.1021/nl200722z
    [14] WU Z L, LI M J, OVERBURY S H.On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes[J].Journal of Catalysis, 2012, 285(1):61-73 10.1016/j.jcat.2011.09.011
    [15] WU Z L, LI M J, MULLINS D R, et al.Probing the surface sites of CeO2 nanocrystals with well-defined surface planes via methanol adsorption and desorption[J].ACS Catalysis, 2012, 2(11):2224-2234 10.1021/cs300467p
    [16] CAMPBELL C T, PEDEN C H F.Oxygen vacancies and catalysis on ceria surfaces[J].Science, 2005, 309(5735):713-714 10.1126/science.1113955
    [17] LIU X W, ZHOU K B, WANG L, et al.Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J].Journal of the American Chemical Society, 2009, 131(9):3140-3141 10.1021/ja808433d
    [18] WANG L, WANG Y F, ZHANG Y, et al.Shape dependence of nanoceria on complete catalytic oxidation of o-xylene[J].Catalysis Science & Technology, 2016, 6(13):4840-4848 10.1039/C6CY00180G
    [19] WANG L, YU Y B , HE H, et al.Oxygen vacancy clusters essential for the catalytic activity of CeO2 nanocubes for o-xylene oxidation[J].Scientific Reports, 2017, 7: 12845 10.1038/s41598-017-13178-6
    [20] MAI H X, SUN L D, ZHANG Y W, et al.Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J].Journal of Physical Chemistry B, 2005, 109(51):24380-24385 10.1021/jp055584b
    [21] ZHOU K B, WANG X, SUN X M, et al.Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J].Journal of Catalysis, 2005, 229(1):206-212 10.1016/j.jcat.2004.11.004
    [22] TANA, ZHANG M L, LI J, et al.Morphology-dependent redox and catalytic properties of CeO2 nanostructures:Nanowires, nanorods and nanoparticles[J].Catalysis Today, 2009, 148(1/2):179-183 10.1016/j.cattod.2009.02.016
    [23] MADIER Y, DESCORME C, LE GOVIC A M, et al.Oxygen mobility in CeO2 and CexZr(1-x)O2 compounds: Study by CO transient oxidation and 18O/16O isotopic exchange[J].Journal of Physical Chemistry B, 1999, 103(50):10999-11006 10.1021/jp991270a
    [24] CONESA J C.Computer modeling of surfaces and defects on cerium dioxide[J].Surface Science, 1995, 339(3):337-352 10.1016/0039-6028(95)00595-1
    [25] MITSUI T, ROSE M K, FOMIN E, et al.Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies[J].Nature, 2003, 422(6933):705-707 10.1038/nature01557
    [26] JIANG D E, DAI S.The role of low-coordinate oxygen on Co3O4(110) in catalytic CO oxidation[J].Physical Chemistry Chemical Physics, 2011, 13(3):978-984 10.1039/C0CP01138J
  • 加载中
计量
  • 文章访问数:  4419
  • HTML全文浏览数:  4030
  • PDF下载数:  457
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-04-22
王少莘, 解文, 余运波. 纳米二氧化铈上活性氧物种的氧空穴团簇捕集位点[J]. 环境工程学报, 2018, 12(4): 1120-1127. doi: 10.12030/j.cjee.201712186
引用本文: 王少莘, 解文, 余运波. 纳米二氧化铈上活性氧物种的氧空穴团簇捕集位点[J]. 环境工程学报, 2018, 12(4): 1120-1127. doi: 10.12030/j.cjee.201712186
WANG Shaoxin, XIE Wen, YU Yunbo. Oxygen vacancy clusters as trapping sites for active oxygen species on nanoceria[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1120-1127. doi: 10.12030/j.cjee.201712186
Citation: WANG Shaoxin, XIE Wen, YU Yunbo. Oxygen vacancy clusters as trapping sites for active oxygen species on nanoceria[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1120-1127. doi: 10.12030/j.cjee.201712186

纳米二氧化铈上活性氧物种的氧空穴团簇捕集位点

  • 1. 中国科学院生态环境研究中心,, 北京 100085
  • 2. 中国科学院大学,北京 100049
  • 3. 中国科学院城市环境研究所,中国科学院区域大气环境研究卓越创新中心,厦门 361021
基金项目:

天津市科技计划项目(16YFXTSF00290)

国家自然科学基金资助项目(21673277)

国家重点研发计划(2017YFC0211105)

摘要: 二氧化铈(CeO2)是一种性能优异的催化材料,已广泛应用于大气污染物的控制,这与其优异的储放氧性能即氧空穴的形成、消除相关;研究氧空穴在上氧物种的形成及活性对设计高效的铈基催化剂具有重要意义。X射线光电子能谱(XPS)、正电子湮没寿命谱(PAS)、氢气-程序升温还原(H2-TPR)研究结果表明,不同形貌的CeO2纳米材料上氧空穴团簇大小、相对强度、单位面积上Ce3+浓度的乘积与高活性氧物种的量之间呈线性相关,这一定量关系揭示氧空穴团簇是CeO2纳米材料上活性氧物种的捕集位点,对认识CeO2催化作用机制具有理论指导意义。

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回