[1] |
YAO H C, YAO Y F.Ceria in automotive exhaust catalysts: I.Oxygen storage[J].Journal of Catalysis, 1984, 86(2):254-265 10.1016/0021-9517(84)90371-3
|
[2] |
TROVARELLI A.Catalytic properties of ceria and CeO2-containing materials[J].Catalysis Reviews: Science and Engineering, 1996, 38(4):439-520 10.1080/01614949608006464
|
[3] |
DELUGA G A, SALGE J R, SCHMIDT L D, et al.Renewable hydrogen from ethanol by autothermal reforming[J].Science, 2004, 303(5660):993-997 10.1126/science.1093045
|
[4] |
LIU S, WU X D, LIU W, et al.Soot oxidation over CeO2 and Ag/CeO2: Factors determining the catalyst activity and stability during reaction[J].Journal of Catalysis, 2016, 337: 188-198 10.1016/j.jcat.2016.01.019
|
[5] |
ESCH F, FABRIS S, ZHOU L, et al.Electron localization determines defect formation on ceria substrates[J].Science, 2005, 309(5735):752-755 10.1126/science.1111568
|
[6] |
PAIER J, PENSCHKE C, SAUER J.Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment[J].Chemical Reviews, 2013, 113(6):3949-3985 10.1021/cr3004949
|
[7] |
N?RENBERG H, BRIGGS G A D.Defect structure of nonstoichiometric CeO2(111) surfaces studied by scanning tunneling microscopy[J].Physical Review Letters, 1997, 79(21):4222-4225 10.1103/physrevlett.79.4222
|
[8] |
NAMAI Y, FUKUI K, IWASAWA Y.Atom-resolved noncontact atomic force microscopic observations of CeO2(111) surfaces with different oxidation states: Surface structure and behavior of surface oxygen atoms[J].Journal of Physical Chemistry B, 2003, 107(42):11666-11673 10.1021/jp030142q
|
[9] |
LI H Y, WANG H F, GONG X Q, et al.Multiple configurations of the two excess 4f electrons on defective CeO2(111): Origin and implications[J].Physical Review B: Condensed Matter, 2009, 79(19):193401 10.1103/PhysRevB.79.193401
|
[10] |
ZHANG C, MICHAELIDES A, KING D A, et al.Oxygen vacancy clusters on ceria: Decisive role of cerium f electrons[J].Physical Review B: Condensed Matter, 2009, 79(7):075433 10.1103/PhysRevB.79.075433
|
[11] |
ZHANG F, WANG P, KOBERSTEIN J, et al.Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy[J].Surface Science, 2004, 563(1/2/3):74-82 10.1016/j.susc.2004.05.138
|
[12] |
XU J H, HARMER J, LI G Q, et al.Size dependent oxygen buffering capacity of ceria nanocrystals[J].Chemical Communications, 2010, 46(11):1887-1889 10.1039/B923780A
|
[13] |
LAWRENCE N J, BREWER J R, WANG L, et al.Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation[J].Nano Letters, 2011, 11(7):2666-2671 10.1021/nl200722z
|
[14] |
WU Z L, LI M J, OVERBURY S H.On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes[J].Journal of Catalysis, 2012, 285(1):61-73 10.1016/j.jcat.2011.09.011
|
[15] |
WU Z L, LI M J, MULLINS D R, et al.Probing the surface sites of CeO2 nanocrystals with well-defined surface planes via methanol adsorption and desorption[J].ACS Catalysis, 2012, 2(11):2224-2234 10.1021/cs300467p
|
[16] |
CAMPBELL C T, PEDEN C H F.Oxygen vacancies and catalysis on ceria surfaces[J].Science, 2005, 309(5735):713-714 10.1126/science.1113955
|
[17] |
LIU X W, ZHOU K B, WANG L, et al.Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J].Journal of the American Chemical Society, 2009, 131(9):3140-3141 10.1021/ja808433d
|
[18] |
WANG L, WANG Y F, ZHANG Y, et al.Shape dependence of nanoceria on complete catalytic oxidation of o-xylene[J].Catalysis Science & Technology, 2016, 6(13):4840-4848 10.1039/C6CY00180G
|
[19] |
WANG L, YU Y B , HE H, et al.Oxygen vacancy clusters essential for the catalytic activity of CeO2 nanocubes for o-xylene oxidation[J].Scientific Reports, 2017, 7: 12845 10.1038/s41598-017-13178-6
|
[20] |
MAI H X, SUN L D, ZHANG Y W, et al.Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J].Journal of Physical Chemistry B, 2005, 109(51):24380-24385 10.1021/jp055584b
|
[21] |
ZHOU K B, WANG X, SUN X M, et al.Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J].Journal of Catalysis, 2005, 229(1):206-212 10.1016/j.jcat.2004.11.004
|
[22] |
TANA, ZHANG M L, LI J, et al.Morphology-dependent redox and catalytic properties of CeO2 nanostructures:Nanowires, nanorods and nanoparticles[J].Catalysis Today, 2009, 148(1/2):179-183 10.1016/j.cattod.2009.02.016
|
[23] |
MADIER Y, DESCORME C, LE GOVIC A M, et al.Oxygen mobility in CeO2 and CexZr(1-x)O2 compounds: Study by CO transient oxidation and 18O/16O isotopic exchange[J].Journal of Physical Chemistry B, 1999, 103(50):10999-11006 10.1021/jp991270a
|
[24] |
CONESA J C.Computer modeling of surfaces and defects on cerium dioxide[J].Surface Science, 1995, 339(3):337-352 10.1016/0039-6028(95)00595-1
|
[25] |
MITSUI T, ROSE M K, FOMIN E, et al.Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies[J].Nature, 2003, 422(6933):705-707 10.1038/nature01557
|
[26] |
JIANG D E, DAI S.The role of low-coordinate oxygen on Co3O4(110) in catalytic CO oxidation[J].Physical Chemistry Chemical Physics, 2011, 13(3):978-984 10.1039/C0CP01138J
|