全文HTML
1 颗粒穿透率理论模型
P=PG⋅PB⋅PI
| (1) |
1.1 重力沉降
PG=1−LvgHμm
| (2) |
vg=Ccdp2(ρp−ρ)g18μ
| (3) |
Cc=1+2.25λdp
| (4) |
1.2 布朗扩散
D=kTCc3πμdp
| (6) |
1.3 惯性碰撞
P=PG⋅PB=(1−LvgHμm)⋅exp[−1.967DLμm(0.5H)2]
| (7) |
μm=qWH=nVWH
| (8) |
2 模型验证
2.1 测试概况
Fig. 1 Layout plan of experiment test

2.2 实验仪器
3 分析与讨论
3.1 不同粒径颗粒物穿透率
Table 1 Calculation result of air changes with different particle sizes
换气次数/ (次·h−1) | 穿透率/% | |||||||
0.25 μm | 0.3 μm | 0.4 μm | 0.5 μm | 0.7 μm | 0.8 μm | 1.0 μm | 1.3 μm | |
0.1 | 96 | 97 | 98 | 99 | 99 | 100 | 100 | 100 |
0.2 | 98 | 99 | 99 | 99 | 100 | 100 | 100 | 100 |
0.5 | 99 | 99 | 100 | 100 | 100 | 100 | 100 | 100 |
变化量︷dCindt=PnCout︸穿透+室内源︷G/V−nCin︸气流带出−沉降︷KCin
| (9) |
Fig. 2 Changes of diameter particle concentration with time

Table 2 Calculation result of penetration rate with particle sizes 0.25, 1.0 and 2.5 μm
粒径/μm | 实验拟合公式 | 相关系数R2 | n/(次·h−1) | P/% |
0.25 | Cin=138 105+32 236exp(-0.025t) | 0.98 | 0.8±0.05 | 0.93±0.05 |
1.0 | Cin=583+625exp(-0.018t) | 0.87 | 0.8±0.05 | 0.80±0.05 |
2.5 | Cin=151+244exp(-0.024t) | 0.75 | 0.8±0.05 | 0.75±0.05 |
Fig. 3 Relationship between penetration and ach

3.2 PM2.5穿透率的理论模型与实验验证
Fig. 4 Change of PM2.5 concentration with time

Fig. 5 Relationship between PM2.5 penetration rate and air exchange rate

3.3 室内颗粒物浓度变化特征
Fig. 6 Change of indoor PM2.5 concentration with time

Table 3 Calculation result of infiltration ventilation
测试工况 | 室内PM2.5浓度公式 | 测试参数 | 求解参数 | |||||
n/(次·h−1) | Cw/(μg·m−3) | P/% | K/ h−1 | G/ (mg·h−1) | CADR/ (m3·h−1) | |||
渗透通风 | Cin=210+492exp(-0.024t) | 0.40 | 78 | 0.85 | 1.0 | 15.4 | — | |
渗透通风+净化器 | Cin=15+742exp(-0.06t) | 0.35 | 50 | 0.83 | 1.0 | 0.85 | 152 |
Fig. 7 Separation efficiency of air cleaner on different particle size
