双氧水协同生化法处理实际印染废水

唐嘉丽, 岳秀, 于广平, 刘坚. 双氧水协同生化法处理实际印染废水[J]. 环境工程学报, 2018, 12(7): 1942-1950. doi: 10.12030/j.cjee.201712056
引用本文: 唐嘉丽, 岳秀, 于广平, 刘坚. 双氧水协同生化法处理实际印染废水[J]. 环境工程学报, 2018, 12(7): 1942-1950. doi: 10.12030/j.cjee.201712056
TANG Jiali, YUE Xiu, YU Guangping, LIU Jian. Treatment of real printing and dyeing wastewater by a H2O2-assisted biochemical method[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1942-1950. doi: 10.12030/j.cjee.201712056
Citation: TANG Jiali, YUE Xiu, YU Guangping, LIU Jian. Treatment of real printing and dyeing wastewater by a H2O2-assisted biochemical method[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1942-1950. doi: 10.12030/j.cjee.201712056

双氧水协同生化法处理实际印染废水

  • 基金项目:

    广东省科技计划项目(2016B090918036)

    广州市科技计划项目(201707010428)

Treatment of real printing and dyeing wastewater by a H2O2-assisted biochemical method

  • Fund Project:
  • 摘要: 研究了双氧水协同水解酸化-接触氧化系统对实际印染废水的处理效果,并与完全生化处理系统进行对比。将100.0 mL经稀释的浓度为3 mL·L-1的双氧水溶液,用蠕动泵以1.67 mL·min-1的速度投加至正常运行的水解酸化体系底部,投加频率1 次·d-1。结果表明,水解酸化体系对COD的去除率为23%~46%,氨氮去除率在-93%~+8.5%之间波动,出水色度为125~150 倍;而接触氧化体系COD去除率提高至39%~59%,氨氮去除率接近100%,出水色度为100~125 倍。采用16S?rDNA?宏基因组高通量测序技术,对比分析了双氧水协同生化处理系统和完全生化处理系统内的微生物菌群结构差异,发现双氧水可洗脱水解酸化污泥中的部分厌氧菌,促进优势菌门Proteobacteria(变形菌)和Bacteroidetes(拟杆菌)的富集,有助于脱色,并有助于洗脱接触氧化体系中的部分非优势菌,刺激Nitrospirae(硝化螺旋菌)的生长,促进脱氮作用。
  • 加载中
  • [1] SEN S,DEMIRER G N.Anaerobic treatment of real textile wastewater with a fluidized bed reactor[J].Water Research,2003,37:1868-1878 10.1016/S0043-1354(02)00577-8
    [2] 李超,尹儿琴,唐思远,等.UASB-A/O耦合工艺处理高含氮印染废水中试[J]. 环境科学研究,2014,27(7):734-741
    [3] 陈红,李响,薛罡,等. 当前印染废水治理中的关键问题[J]. 工业水处理,2015,35(10):16-19
    [4] 梁波,徐金球,关杰,等. 生物法处理印染废水的研究进展[J]. 化工环保,2015,35(3):259-266
    [5] HE Y Z,WANG X J,XU J L,et al.Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents[J].Bioresource Technology, 2013,133:150–157 10.1016/j.biortech.2013.01.074
    [6] GANZENKO O,HUGUENOT D, VAN HULLEBUSCH E D.Electrochemical advanced oxidation and biological processes for wastewater treatment: A review of the combined approaches[J].Environmental Science and Pollution Research,2014,21(14):8493-8524 10.1007/s11356-014-2770-6
    [7] OLLER I,MALATO S,SáNCHEZ-PéREZ J A.Combination of advanced oxidation processes and biological treatments for wastewater decontamination:A review[J].Science of the Total Environment,2011,409:4141-4166 10.1016/j.scitotenv.2010.08.061
    [8] XIAO X F,SUN Y J,SUN W Q.Advanced treatment of actual textile dye wastewater by Fenton-flocculation process[J].Canadian Journal of Chemical Engineering,2017,95(7):1245-1252 10.1002/cjce.22752
    [9] 贾瑞来,刘吉宝,魏源送,等. 残留过氧化氢对微波-过氧化氢-碱预处理后污泥水解酸化的影响[J]. 环境科学,2015,36(10):3801-3808
    [10] SHARMA S,KAPOOR S,CHRISTIAN R A.Effect of Fenton process on treatment of simulated textile wastewater: Optimization using response surface methodology[J].International Journal of Environmental Science and Technology,2017,14:1665–1678 10.1007/s13762-017-1253-y
    [11] ZHANG Y,RONG W,FU Y B,et al. Photocatalytic degradation of poly (vinyl alcohol) on Pt /TiO2 with Fenton reagent[J].Journal of Polymers and the Environment,2011,19(4):966-970 10.1007/s10924-011-0350-0
    [12] CHOU W L, CHEN L S, WANG C T.Electro-Fenton removal of polyvinyl alcohol from aqueous solutions using an activated carbon fiber cathode[J].Fresenius Environmental Bulletin,2012,21(12):3735-3742
    [13] HAMAD D,DHIB R,MEHRVAR M.Photochemical degradation of aqueous polyvinyl alcohol in a continuous UV/H2O2 process: Experimental and statistical analysis[J].Journal of Polymers and the Environment,2016,24:72-83 10.1007/s10924-016-0750-2
    [14] 岳秀,唐嘉丽,于广平,等. 双氧水协同生化法强化处理印染废水[J]. 环境科学,2017,38(9):3769-3780 10.13227/j.hjkx.201702046
    [15] XIE X H, LIU N,YANG B,et al.Comparison of microbial community in hydrolysis acidification reactor depending on different structure dyes by Illumina MiSeq sequencing[J].International Biodeterioration & Biodegradation,2016,111:14-21 10.1016/j.ibiod.2016.04.004
    [16] YANG Q X,WANG J,WANG H T,et al.Evolution of the microbial community in a full-scale printing and dyeing wastewater treatment system[J].Bioresource Technology,2012,117:155-163 10.1016/j.biortech.2012.04.059
    [17] ZHANG Y,WANG X,HU M,et al.Effect of hydraulic retention time (HRT) on the biodegradation of trichloroethylene wastewater and anaerobic bacterial community in the UASB reactor[J].Applied Microbiology and Biotechnology,2015,99:1977-1987 10.1007/s00253-014-6096-6
    [18] WANG Y,ZHU K,ZHENG Y,et al.The effect of recycling flux on the performance and microbial community composition of a biofilm hydrolytic-aerobic recycling process treating anthraquinone reactive dyes[J].Molecules,2011,16:9838-9849 10.3390/molecules16129838
    [19] 王凯军,贾立敏. 城市污水生物处理新技术开发与应用[M]. 北京:化学工业出版社,2001:69-70
    [20] 范荣亮,谢悦波,宗绪成,等. 印染废水生物处理工艺的影响因子探讨[J]. 工业水处理,2010,30(9):39-42
    [21] BAHMANI P,MALEKI A,GHAHRAMANI E.Decolorization of the dye reactive black 5 using Fenton oxidation[J].African Journal of Biotechnology,2013,12(26):4115-4122 10.5897/AJB12.1226
    [22] 许志忠,李晓春. 过氧化氢分解影响因素分析[J]. 染整技术,2006,28(1):33-38
    [23] PLGNATELLO J J.Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide[J].Environmental Science & Technology,1992,26:944-951 10.1021/es00029a012
    [24] ZHU M,LV F,HAO L P,et al.Regulating the hydrolysis of organic wastes by micro aeration and effluent recirculation[J].Waste Management,2009,29(7):2042-2050 10.1016/j.wasman.2008.12.023
    [25] 张原洁,苏本生,徐红岩,等.微氧技术在废水生物处理中的应用研究进展[J].工业水处理,2017,37(3):15-20
    [26] KATIPOGLU-YAZAN T,COKGOR E U,INSEL G, et al.Is ammonification the rate limiting step for nitrification kinetics?[J].Bioresource Technology,2012,114:117-125 10.1016/j.biortech.2012.03.017
    [27] SUHRA K I,PEDERSENA P B,ARVINB E.End-of-pipe denitrification using RAS effluent waste streams: Effect of C/N-ratio and hydraulic retention time[J].Aquacultural Engineering,2013,53:57-64 10.1016/j.aquaeng.2012.11.005
    [28] JóZ′WIAKOWSKI K,MARZEC M,FIEDUREK J.Application of H2O2 to optimize ammonium removal from domestic wastewater[J].Separation and Purification Technology,2017,173:357-363 10.1016/j.seppur.2016.08.047
    [29] DOS-SANTOS A B,CERVANTES F J,VAN LIER J B.Review paper on current technologies for decolourisation of textile wastewaters:Perspectives for anaerobic biotechnology[J].Bioresource Technology,2007,98:2369-2385 10.1016/j.biortech.2006.11.013
    [30] IMRAN M,CROWLEY D E,KHALID A,et al.Microbial biotechnology for decolorization of textile wastewaters[J].Reviews in Environmental Science and Bio/Technology,2015,14:73-92 10.1007/s11157-014-9344-4
    [31] LI C,REN H,YIN E,et al.Pilot-scale study on nitrogen and aromatic compounds removal in printing and dyeing wastewater by reinforced hydrolysis-denitrification coupling process and its microbial community analysis[J].Environmental Science and Pollution Research, 2015,22(12):9483-9493 10.1007/s11356-015-4124-4
    [32] 刘娜,谢学辉,杨波,等. 生物强化水解酸化过程前后微生物群落结构变化[J]. 环境工程学报,2016, 10(6):2769-2774 10.12030/j.cjee.201509257
  • 加载中
计量
  • 文章访问数:  4326
  • HTML全文浏览数:  4035
  • PDF下载数:  373
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-07-26

双氧水协同生化法处理实际印染废水

  • 1. 广州中国科学院沈阳自动化研究所分所,广州 511458
基金项目:

广东省科技计划项目(2016B090918036)

广州市科技计划项目(201707010428)

摘要: 研究了双氧水协同水解酸化-接触氧化系统对实际印染废水的处理效果,并与完全生化处理系统进行对比。将100.0 mL经稀释的浓度为3 mL·L-1的双氧水溶液,用蠕动泵以1.67 mL·min-1的速度投加至正常运行的水解酸化体系底部,投加频率1 次·d-1。结果表明,水解酸化体系对COD的去除率为23%~46%,氨氮去除率在-93%~+8.5%之间波动,出水色度为125~150 倍;而接触氧化体系COD去除率提高至39%~59%,氨氮去除率接近100%,出水色度为100~125 倍。采用16S?rDNA?宏基因组高通量测序技术,对比分析了双氧水协同生化处理系统和完全生化处理系统内的微生物菌群结构差异,发现双氧水可洗脱水解酸化污泥中的部分厌氧菌,促进优势菌门Proteobacteria(变形菌)和Bacteroidetes(拟杆菌)的富集,有助于脱色,并有助于洗脱接触氧化体系中的部分非优势菌,刺激Nitrospirae(硝化螺旋菌)的生长,促进脱氮作用。

English Abstract

参考文献 (32)

目录

/

返回文章
返回