ZnIn2S4可见光催化降解氟伐他汀的性能与机理

陆雪, 王磊, 刘婷婷, 樊佳敏, 蔡新欣, 苗瑞. ZnIn2S4可见光催化降解氟伐他汀的性能与机理[J]. 环境工程学报, 2018, 12(5): 1397-1407. doi: 10.12030/j.cjee.201710164
引用本文: 陆雪, 王磊, 刘婷婷, 樊佳敏, 蔡新欣, 苗瑞. ZnIn2S4可见光催化降解氟伐他汀的性能与机理[J]. 环境工程学报, 2018, 12(5): 1397-1407. doi: 10.12030/j.cjee.201710164
LU Xue, WANG Lei, LIU Tingting, FAN Jiamin, CAI Xinxin, MIAO Rui. Performance and mechanism of photocatalytic degradation of fluvastatin by ZnIn2S4 under visible-light irradiation[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1397-1407. doi: 10.12030/j.cjee.201710164
Citation: LU Xue, WANG Lei, LIU Tingting, FAN Jiamin, CAI Xinxin, MIAO Rui. Performance and mechanism of photocatalytic degradation of fluvastatin by ZnIn2S4 under visible-light irradiation[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1397-1407. doi: 10.12030/j.cjee.201710164

ZnIn2S4可见光催化降解氟伐他汀的性能与机理

  • 基金项目:

    陕西省重点科技创新团队计划(2017KCT-19-01)

    陕西省重点产业链(群)项目(2017ZDCXL-GY-07-01)

    国家自然科学基金青年基金资助项目(51608429)

    西安建筑科技大学创新团队项目

Performance and mechanism of photocatalytic degradation of fluvastatin by ZnIn2S4 under visible-light irradiation

  • Fund Project:
  • 摘要: 以氟伐他汀为目标污染物,以功率为500 W的长弧氙灯为光源,通过水热法制备可见光催化剂ZnIn2S4,研究ZnIn2S4对氟伐他汀的光催化降解性能,考察了氟伐他汀初始浓度、ZnIn2S4投加量、溶液pH对ZnIn2S4光催化降解氟伐他汀性能的影响。通过原位捕获实验确定ZnIn2S4可见光催化降解氟伐他汀过程中产生的自由基,通过液相色谱-离子阱-飞行时间质谱(LCMS-IT-TOF)来鉴别降解过程的中间产物,提出氟伐他汀可能的降解路径及机理。结果表明:ZnIn2S4光催化降解氟伐他汀的最佳条件为氟伐他汀初始浓度10 mg·L-1、催化剂投加量0.2 g·L-1、pH接近5,在最佳条件下氟伐他汀的降解率可达到83.6%,矿化率可达到45.8%。原位捕获实验结果表明,超氧自由基是在ZnIn2S4可见光催化降解氟伐他汀过程中起主要氧化作用的活性自由基,羟基自由基和过氧化氢对氟伐他汀的降解起到了辅助作用。氟伐他汀的降解机理是超氧自由基为主、羟基自由基和过氧化氢为辅联合攻击环状结构与直链相连的C—N键、C—C键以及直链和环状结构中的C=C键,生成小分子的环状有机物、直链有机物以及羟基化衍生物,中间产物进一步被氧化并最终被分解成CO2和H2O。
  • 加载中
  • [1] DAUGHTON C G, TERNES T A.Pharmaceuticals and personal care products in the environment: Agents of subtle changes[J].Environmental Health Perspectives, 1999,107(Supply 6):907-938
    [2] CHEN L G, ZHANG X P, XU Y, et al.Determination of fluoroquinolone antibiotics in environmental water samples based on magnetic molecularly imprinted polymer extraction followed by liquid chromatography–tandem mass spectrometry[J].Analytica Chimica Acta,2010,662(1):31-38 10.1016/j.aca.2010.01.001
    [3] KOLPIN D W, FURLONG E T, MEEYER M T, et al.Pharmaceuticals, hormones and other organic wastewater contaminants in U.S.Streams,1999-2000: A national reconnaissance[J].Environmental Science & Technology,2002,36(7):1202-1211 10.1002/047147844X.gw2107
    [4] TSE F L, JAFFE J M, TROENDLE A.Pharmacokinetics of fluvastatin after single and multiple doses in normal volunteers[J].Journal of Clinical Pharmacology,1992,32(7):630-638
    [5] WEIGEL S, BERGER U, JENSEN E, et al.Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromso/Norway with emphasis on ibuprofen and its metabolites[J].Chemosphere,2004,56(6):583-592 10.1016/j.chemosphere.2004.04.015
    [6] VIENO N, TUHKANENT, KRONBERG L.Elimination of pharmaceuticals in sewage treatment plants in Finland[J].Water Research,2007,41(5):1001-1012 10.1016/j.watres.2006.12.017
    [7] TERNES T A, MEISENHEIMER M, MCDOWEL D, et al.Removal of pharmaceuticals during drinking water treatment[J].Environment Science & Technology,2006,36(17):3855-3863
    [8] 周慧慧.紫外光降解水中典型羧酸类PPCPs的效能与机理[D]. 杭州:浙江大学,2014
    [9] FREIRE R S, KUBOTA L T, DURAN N, et al.New trends for treatment of industrial effluents containing organochloride species[J].Química Nova,2000,23(4):504-511
    [10] KUNZ A, ZAMORA P P, DURAN N.New tendencies on textile effluent treatment[J].Quimica Nova,2002,25(1):78-82
    [11] MORAIS E C, CORREA G G, BRAMBILLA R, et al.Selective silica-based sorbent materials synthesized by molecular imprinting for adsorption of pharmaceuticals in aqueous matrices[J].Journal of Separation Science,2013,36(3):636-643
    [12] MA N, ZHANG Y B, ZHAO H M, et al.Integration of separation and photocatalysis using an inorganic membrane modified with Si-doped TiO2 for water purification[J].Journal of Membrane Science,2009,335(1/2):58-67 10.1016/j.mem sci. 2009. 02. 040
    [13] LEI Z, YOU W, LIU M, et al.Photocatalytic water resuction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method[J].Chemical Communications,2003,9(17):2142-2143 10.1039/B306813G
    [14] BAHNEMANN W, MUNEER M, HAQUE M.Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions[J].Catalysis Today,2007,124(3):133-148 10.1016/j.cattod.2007.03.031
    [15] MOZIA S.Photocatalytic membrane reactors (PMRs) in water and wastewater treatment:A review[J].Separation & Purification Technology, 2010,73(2):71-91 10.1016/j.seppur.2010.03.021.
    [16] CHEN D, RAY A K.Photodegradation kinetics of 4-nitrophenol in TiO2 suspension [J].Water Research,1998,32 (11):3223-3234
    [17] SINGH H K, SAQUID M, HAQUE M M, et al.Heterogeneous photocatalysed decolorization of two selected dye derivatives neutral red and toluidine blue in aqueous suspensions [J].Chemical Engineering Journal,2008,136(2/3):77-81 10.1016/j.cej.2007.05.009
    [18] QAMAR M, MUNEER M.A comparative photocatalytic activity of titanium dioxide and zinc oxide by investigating the degradation of vanillin [J].Desalination,2009,249(2):535-540 10.1016/j.desal.2009.01.022
    [19] 董国胜.几种解离常数测定方法的比较与评价[J].安全、健康和环境,2010,10(10):42-44
    [20] CHEN F, ZHAO J, HIDAKA H.Highly selective deethylation of rhodamine B: Adsorption and photooxidatio pathways of the dye on the TiO2/SiO2 composite photocatalyst[J].International Journal of Photoenergy,2003,4(5):209-217 10.1155/ S1110662X03000345
    [21] BUDHA N R, FRYMOYER A.Drug absorption interactions between oral targeted anticancer agents and PPIs: Is pH-dependent solubility the achilles heel of targeted therapy?[J].Clinical Pharmacology & Therapeutics,2012,92(2):203-213
    [22] KASHIF N, OUYANG F.Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2[J].Acta Scientiae Circumstantiae,2009,21(4):527-533 10.1016/S1001-0742(08)62303-7
    [23] KAUR A, KANSAL S K, et al.Bi2WO6 nanocuboids: An efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase [J].Chemical Engineering Journal, 2016, 302(10): 194-203 10.1016/j.cej. 2016. 05.010
    [24] LIU T T, WANG L, FAN J M, et al.Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: Adsorption, active species, and pathways[J].RSC Advances, 2017, 7(20):12292-12330 10.1039/c7ra00199a
    [25] RAZAVI B, SONG W H, SANTOKE H, et al.Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms[J].Radiation Physics & Chemistry, 2011, 80(3):453-461 10.1016/ j.radphyschem.2010.10.004
    [26] SANTOKE H, SONG W, COOPER W, et al.Free-radical-induced oxidative and reductive degradation of fluoroquinolone pharmaceuticals: Kinetic studies and degradation mechanism[J].Journal of Physical Chemistry A, 2009, 113(7): 7846-7851
  • 加载中
计量
  • 文章访问数:  2616
  • HTML全文浏览数:  2228
  • PDF下载数:  350
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-05-19

ZnIn2S4可见光催化降解氟伐他汀的性能与机理

  • 1. 西安建筑科技大学环境与市政工程学院,西安 710055
  • 2. 陕西省膜分离技术研究院,西安 710055
  • 3. 陕西省膜分离重点实验室,西安 710055
基金项目:

陕西省重点科技创新团队计划(2017KCT-19-01)

陕西省重点产业链(群)项目(2017ZDCXL-GY-07-01)

国家自然科学基金青年基金资助项目(51608429)

西安建筑科技大学创新团队项目

摘要: 以氟伐他汀为目标污染物,以功率为500 W的长弧氙灯为光源,通过水热法制备可见光催化剂ZnIn2S4,研究ZnIn2S4对氟伐他汀的光催化降解性能,考察了氟伐他汀初始浓度、ZnIn2S4投加量、溶液pH对ZnIn2S4光催化降解氟伐他汀性能的影响。通过原位捕获实验确定ZnIn2S4可见光催化降解氟伐他汀过程中产生的自由基,通过液相色谱-离子阱-飞行时间质谱(LCMS-IT-TOF)来鉴别降解过程的中间产物,提出氟伐他汀可能的降解路径及机理。结果表明:ZnIn2S4光催化降解氟伐他汀的最佳条件为氟伐他汀初始浓度10 mg·L-1、催化剂投加量0.2 g·L-1、pH接近5,在最佳条件下氟伐他汀的降解率可达到83.6%,矿化率可达到45.8%。原位捕获实验结果表明,超氧自由基是在ZnIn2S4可见光催化降解氟伐他汀过程中起主要氧化作用的活性自由基,羟基自由基和过氧化氢对氟伐他汀的降解起到了辅助作用。氟伐他汀的降解机理是超氧自由基为主、羟基自由基和过氧化氢为辅联合攻击环状结构与直链相连的C—N键、C—C键以及直链和环状结构中的C=C键,生成小分子的环状有机物、直链有机物以及羟基化衍生物,中间产物进一步被氧化并最终被分解成CO2和H2O。

English Abstract

参考文献 (26)

目录

/

返回文章
返回