聚醚砜/改性凹凸棒杂化微球对双酚A的吸附性能

沈浩, 余健, 任文辉. 聚醚砜/改性凹凸棒杂化微球对双酚A的吸附性能[J]. 环境工程学报, 2018, 12(4): 1013-1021. doi: 10.12030/j.cjee.201710117
引用本文: 沈浩, 余健, 任文辉. 聚醚砜/改性凹凸棒杂化微球对双酚A的吸附性能[J]. 环境工程学报, 2018, 12(4): 1013-1021. doi: 10.12030/j.cjee.201710117
SHEN Hao, YU Jian, REN Wenhui. Adsorption properties of polyethersulphone/modified attapulgite hybrid microspheres for bisphenol A[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1013-1021. doi: 10.12030/j.cjee.201710117
Citation: SHEN Hao, YU Jian, REN Wenhui. Adsorption properties of polyethersulphone/modified attapulgite hybrid microspheres for bisphenol A[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1013-1021. doi: 10.12030/j.cjee.201710117

聚醚砜/改性凹凸棒杂化微球对双酚A的吸附性能

  • 基金项目:

    国家自然科学基金青年科学基金资助项目(E080401)

Adsorption properties of polyethersulphone/modified attapulgite hybrid microspheres for bisphenol A

  • Fund Project:
  • 摘要: 以酸热、有机改性凹凸棒和聚醚砜为原料,利用液-液分离技术制备了聚醚砜/改性凹凸棒毫米级杂化微球。利用扫描电镜和比表面仪分析所制杂化微球表观特征。实验探讨了改性凹凸棒掺杂比和溶液pH对杂化微球吸附双酚A效果的影响,并深入研究了吸附动力学和热力学原理。实验结果表明:杂化微球对双酚A的吸附性能受pH影响较小;相比纯聚醚砜微球,掺杂后的杂化微球对双酚A吸附量从1.97 μmol·g-1提升到11.80 μmol·g-1;吸附过程符合准二级动力学模型和Langmuir模型。根据Langmuir模型计算可知,25 ℃时杂化微球最大吸附量为116.28 μmol·g-1。5次乙醇再生后,杂化微球对双酚A的去除效果依然保持在95%以上。杂化微球作为吸附剂在水处理中具有潜在应用价值。
  • 加载中
  • [1] KANG J H, KATAYAMA Y, KONDO F.Biodegradation or metabolism of bisphenol A: From microorganisms to mammals[J].Toxicology,2006,217(2/3):81-90 10.1016/j.tox.2005.10.001
    [2] ZHUANG W, WU K, WANG Y, et al.Association of serum bisphenol-A concentration and male reproductive function among exposed workers[J].Archives of Environmental Contamination & Toxicology,2015,68(1):38-45 10.1007/s00244-014-0078-7
    [3] MíNGUEZALARCóN L, HAUSER R, GASKINS A J.Effects of bisphenol A on male and couple reproductive health: A review[J].Fertility & Sterility,2016,106(4):864-870 10.1016/j.fertnstert.2016.07.1118
    [4] ANDRIANOU X D, G?NGLER S, PICIU A, et al.Human exposures to bisphenol A, bisphenol F and chlorinated bisphenol A derivatives and thyroid Function[J].Plos One,2016,11(10):e0155237 10.1371/journal.pone.0155237
    [5] SHARPE R M, DRAKE A J.Bisphenol a and metabolic syndrome[J].Endocrinology,2010,151(6):2404-2407 10.1210/ en.2010-0445
    [6] STEVEN G C.Association of exposure to bisphenol A and incidence of cardiovascular disease and hypertension[J].Journal of Clinical Hypertension,2015,17(9):737-739 10.1111/jch.12568
    [7] DELGADO L F, CHARLES P, GLUCINA K, et al.The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon: A review[J].Science of the Total Environment,2012,435-436(7):509-525 10.1016/j.scitotenv.2012.07.046
    [8] YOON Y, WESTERHOFF P, SNYDER S A, et al.Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes[J].Desalination,2007,202(1):16-23 10.1016/j.desal.2005.12.033
    [9] GMUREK M, OLAK-KUCHARCZYK M, LEDAKOWICZ S.Photochemical decomposition of endocrine disrupting compounds: A review[J].Chemical Engineering Journal,2017,310(2):437-456 10.1016/j.cej.2016.05.014
    [10] ZHANG C, LI Y, WANG C, et al.Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation: A review[J].Critical Reviews in Environmental Science & Technology,2016,46(1):1-59 10.1080/10643389. 2015.1061881
    [11] CHEN H, ZHAO J.Adsorption study for removal of congo red anionic dye using organo-attapulgite[J].Adsorption,2009,15(4): 381-389 10.1007/s10450-009-9155-z
    [12] LU Z, HAO Z, WANG J, et al.Efficient removal of europium from aqueous solutions using attapulgite-iron oxide magnetic composites[J].Journal of Industrial & Engineering Chemistry,2016,34:374-381 10.1016/j.jiec.2015.12.013
    [13] XI Y, MALLAVARAPU M, NAIDU R.Adsorption of the herbicide 2,4-D on organo-palygorskite[J].Applied Clay Science, 2010,49(3):255-261 10.1016/j.clay.2010.05.015
    [14] 金叶玲, 陈静, 钱运华, 等. 纯化凹凸棒石黏土的理化表征与纯化机理 [J]. 煤炭学报,2005,30(5):642-646
    [15] 吕东琴, 周仕学, 张同环, 等. 凹凸棒石的提纯及改性对其吸附性能的影响 [J]. 广东化工,2010,37(4):59-60
    [16] ZHAO C, WEI Q, YANG K, et al.Preparation of porous polysulfone beads for selective removal of endocrine disruptors[J].Separation & Purification Technology,2004,40(3):297-302 10.1016/j.seppur.2004.03.007
    [17] CAO F, BAI P, LI H, et al.Preparation of polyethersulfone-organophilic montmorillonite hybrid particles for the removal of bisphenol A[J].Journal of Hazardous Materials,2009,162(2):791-798 10.1016/j.jhazmat.2008.05.102
    [18] LAZAREVI? S, JANKOVI?-?ASTVAN I, JOVANOVI? D, et al.Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites[J].Applied Clay Science,2007,37(1/2):47-57 10.1016/j.clay.2006.11.008
    [19] DENG X, WANG T, ZHAO F, et al.Poly(ether sulfone)/activated carbon hybrid beads for creatinine adsorption[J].Journal of Applied Polymer Science,2007,103(2):1085-1092 10.1002/app.25344
    [20] TüTEM E, APAK R, NAL F.Adsorptive removal of chlorophenols from water by bituminous shale[J].Water Research,1998, 32(8):2315-2324 10.1016/S0043-1354(97)00476-4
    [21] HO Y S, MCKAY G.Pseudo-second order model for sorption processes[J].Process Biochemistry,1999,34(5):451-465 10.1016/S0032-9592(98)00112-5
    [22] MALL I D, SRIVASTAVA V C, AGARWAL N K.Adsorptive removal of Auramine-O: Kinetic and equilibrium study[J].Journal of Hazardous Materials,2007,143(1/2):386-395 10.1016/j.jhazmat.2006.09.059
    [23] SHARMA Y C, SINHA A S K, UPADHYAY S N.Characterization and adsorption studies of cocos Nucifera L.activated carbon for the removal of methylene blue from aqueous solutions[J].Journal of Chemical & Engineering Data,2010,55(8):11-18 10.1021/je900937f
    [24] CHEN Y, ZHANG D.Adsorption kinetics, isotherm and thermodynamics studies of flavones from vaccinium bracteatum thunb leaves on NKA-2 resin[J].Chemical Engineering Journal,2014,254(20):579-585 10.1016/j.cej.2014.05.120
    [25] MUNAGAPATI V S, KIM D S.Adsorption of anionic azo dye congo red from aqueous solution by cationic modified orange peel powder[J].Journal of Molecular Liquids,2016,220:540-548 10.1016/j.molliq.2016.04.119
    [26] LIU Y.Is the free energy change of adsorption correctly calculated?[J].Journal of Chemical & Engineering Data,2009, 54(7):1981-1985 10.1021/je800661q
    [27] BACCAR R, BLANQUEZ P, BOUZID J, et al.Modeling of adsorption isotherms and kinetics of a tannery dye onto an activated carbon prepared from an agricultural by-product[J].Fuel Processing Technology,2013,106:408-415 10.1016/ j.fuproc.2012.09.006
  • 加载中
计量
  • 文章访问数:  3068
  • HTML全文浏览数:  2654
  • PDF下载数:  426
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-04-22

聚醚砜/改性凹凸棒杂化微球对双酚A的吸附性能

  • 1. 湖南大学土木工程学院,长沙 410082
基金项目:

国家自然科学基金青年科学基金资助项目(E080401)

摘要: 以酸热、有机改性凹凸棒和聚醚砜为原料,利用液-液分离技术制备了聚醚砜/改性凹凸棒毫米级杂化微球。利用扫描电镜和比表面仪分析所制杂化微球表观特征。实验探讨了改性凹凸棒掺杂比和溶液pH对杂化微球吸附双酚A效果的影响,并深入研究了吸附动力学和热力学原理。实验结果表明:杂化微球对双酚A的吸附性能受pH影响较小;相比纯聚醚砜微球,掺杂后的杂化微球对双酚A吸附量从1.97 μmol·g-1提升到11.80 μmol·g-1;吸附过程符合准二级动力学模型和Langmuir模型。根据Langmuir模型计算可知,25 ℃时杂化微球最大吸附量为116.28 μmol·g-1。5次乙醇再生后,杂化微球对双酚A的去除效果依然保持在95%以上。杂化微球作为吸附剂在水处理中具有潜在应用价值。

English Abstract

参考文献 (27)

目录

/

返回文章
返回