MTF-CWs工艺对剩余污泥厌氧消化液的强化脱氮效果

苏光曦, 杨永哲, 张雷, 方进宾, 程果. MTF-CWs工艺对剩余污泥厌氧消化液的强化脱氮效果[J]. 环境工程学报, 2018, 12(4): 1022-1032. doi: 10.12030/j.cjee.201710077
引用本文: 苏光曦, 杨永哲, 张雷, 方进宾, 程果. MTF-CWs工艺对剩余污泥厌氧消化液的强化脱氮效果[J]. 环境工程学报, 2018, 12(4): 1022-1032. doi: 10.12030/j.cjee.201710077
SU Guangxi, YANG Yongzhe, ZHANG Lei, FANG Jinbin, CHENG Guo. Performance of MTF-CWs process in enhanced nitrogen removal from excess sludge anaerobic digester liquids[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1022-1032. doi: 10.12030/j.cjee.201710077
Citation: SU Guangxi, YANG Yongzhe, ZHANG Lei, FANG Jinbin, CHENG Guo. Performance of MTF-CWs process in enhanced nitrogen removal from excess sludge anaerobic digester liquids[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1022-1032. doi: 10.12030/j.cjee.201710077

MTF-CWs工艺对剩余污泥厌氧消化液的强化脱氮效果

  • 基金项目:

    陕西省重点科技创新团队计划(2017KCT-19-01)

    高等学校博士学科点专项科研基金(20116120110008)

Performance of MTF-CWs process in enhanced nitrogen removal from excess sludge anaerobic digester liquids

  • Fund Project:
  • 摘要: 采用多级潮汐流人工湿地(multi-stage tidal flow constructed wetlands, MTF-CWs)处理城市污水处理厂剩余污泥厌氧消化液(excess sludge anaerobic digester liquids, ES-ADL),以垂直潮汐流的运行方式强化硝化,并根据进水NH4+-N和TN浓度分为2种不同工况。实验结果表明:在进水COD、NH4+-N和TN浓度分别为(293.68±9.62)、(845.70±11.53)和(847.00±11.47)mg·L-1的条件下(工况1),出水COD、NH4+-N和TN浓度分别为(84.47±8.10)、(8.81±1.74)和(351.50±7.78)mg·L-1,COD、NH4+-N和TN的平均去除率分别为72.45%、98.93%和56.48%;在进水COD、NH4+-N和TN浓度分别为(413.31±7.47)、(1 023.85±8.32)和(1 025.78±8.31)mg·L-1的条件下(工况2),出水COD、NH4+-N和TN浓度分别为(51.60±6.05)、(9.58±3.13)和(359.92±7.68)mg·L-1。COD、NH4+-N和TN的平均去除率分别为87.34%、99.05%和64.68%。在上述2种工况条件下,可将城市污水处理厂ES-ADL回流引起的氮循环累积量分别降低58.50%和62.19%。溶解氧消耗计算结果表明:MTF-CWs并没有提供NH4+-N的氧化(全程硝化或短程硝化过程)所需要的溶解氧;氮平衡计算结果表明:2种工况条件下通过非传统硝化-反硝化途径(如厌氧氨氧化)去除的总氮负荷分别占据总氮去除负荷的86.30%和82.53%。采用Miseq高通量测序技术进行菌群分析,结果表明:在反硝化脱氮贡献最大的人工湿地单元存在大量的厌氧氨氧化细菌Candidatus Kuenenia,且其占比随着取样深度(0.05~0.20 m)增加而增加(其丰度由5.08%增加到13.18%),表明MTF-CWs处理ES-ADL时存在厌氧氨氧化途径。
  • 加载中
  • [1] HU Y, HE F, MA L, et al.Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems[J].Bioresour Technology,2016,207:339-345 10.1016/j.biortech.2016.01.106
    [2] FUX C, BOEHLER M, HUBER P, et al.Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant[J].Journal of Biotechnology,2002,99(3):295-306 10.1016/S0168-1656(02)00220-1
    [3] AHN Y H, CHOI H C.Autotrophic nitrogen removal from sludge digester liquids in upflow sludge bed reactor with external aeration[J].Process Biochemistry,2006,41(9):1945-1950 10.1016/j.procbio.2006.04.006
    [4] CHEN H, LIU S, YANG F, et al.The development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a single reactor for nitrogen removal[J].Bioresource technology,2009,100(4):1548-1554 10.1016/j.biortech.2008.09.003
    [5] KICAISI A K.The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review[J].Ecological Engineering,2001,16(4):545-560 10.1016/S0925-8574(00)00113-0
    [6] REDDY K R, D'ANGELO E M.Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands[J].Water Science and Technology,1997,35(5):1-10 10.1016/S0273-1223(97)00046-2
    [7] 孙文杰,佘宗莲,关艳艳,等. 垂直流人工湿地净化污水的研究进展[J]. 安全与环境工程,2011,18(1):25-28 10.3969/j.issn.1671-1556.2011.01.007
    [8] BRIX H.Do macrophytes play a role in constructed treatment wetlands?[J].Water Science and Technology,1997,35(5):11-17 10.1016/S0273-1223(97)00047-4
    [9] SUN G, GRAY K R, BIDDLESTONE A J, et al.Treatment of agricultural wastewater in a combined tidal flow-downflow reed bed system[J].Water Science and Technology,1999,40(3):139-146 10.1016/S0273-1223(99)00457-6
    [10] SOARES M I M.Biological denitrification of groundwater[J].Water Air & Soil Pollution,2000,123(1/2/3/4):183-193
    [11] CYDZIKKWIATKOWSKA A, ZIELI?SKA M, BERNAT K, et al.Treatment of high-ammonium anaerobic digester supernatant by aerobic granular sludge and ultrafiltration processes[J].Chemosphere,2013,90(8):2208-2215 10.1016/j.chemosphere.2012.09.072
    [12] DOSTA J, GALí A, BENABDALLAH E T, et al.Operation and model description of a sequencing batch reactor treating reject water for biological nitrogen removal via nitrite[J].Bioresource Technology,2007,98(11):2065-2075 10.1016/j.biortech.2006.04.033
    [13] 赵联芳,朱伟,赵建. 人工湿地处理低碳氮比污染河水时的脱氮机理[J]. 环境科学学报,2006,26(11):1821-1827 10.3321/j.issn:0253-2468.2006.11.012
    [14] 赵立,吴雷,杨永哲. 多级潮汐流人工湿地对污泥厌氧消化液中氨氮及有机物的去除特征[J]. 环境工程学报, 2016,10(7):3687-3693 10.12030/j.cjee.201501218
    [15] 国家环境保护总局. 水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002
    [16] BRIX H.Gas exchange through the soil-atmosphere interphase and through dead culms of phragmites australis in a constructed reed bed receiving domestic sewage[J].Water Research,1990,24(2):259-266 10.1016/0043-1354(90)90112-J
    [17] VáZQUEZ M A, VARGA D D L, PLANA R, et al.Vertical flow constructed wetland treating high strength wastewater from swine slurry composting[J].Ecological Engineering,2013,50:37-43 10.1016/j.ecoleng.2012.06.038
    [18] PELISSARI C, SEZERINO P H, DECEZARO S T, et al.Nitrogen transformation in horizontal and vertical flow constructed wetlands applied for dairy cattle wastewater treatment in southern Brazil[J].Ecological Engineering,2014,73:307-310 10.1016/j.ecoleng.2014.09.085
    [19] HEROUVIM E, AKRATOS C S, TEKERLEKOPOULOU A, et al.Treatment of olive mill wastewater in pilot-scale vertical flow constructed wetlands[J].Ecological Engineering,2011,37(6):931-939 10.1016/j.ecoleng.2011.01.018
    [20] WU S, ZHANG D, AUSTIN D, et al.Evaluation of a lab-scale tidal flow constructed wetland performance: Oxygen transfer capacity, organic matter and ammonium removal[J].Ecological Engineering,2011,37(11):1789-1795 10.1016/j.ecoleng.2011.06.026
    [21] ROMAN, R V, GAVRILESCU M, et al.Oxygen transfer efficiency in the biosynthesis of antibiotics in bioreactors with a modified RUSHTON turbine agitator [J].Acta Biotechnologica,1994,14(2):181-192 10.1002/abio.370140212
    [22] LOOSDRECHT C M V M, SALEM S.Biological treatment of sludge digester liquids[J].Water Science & Technology,2006,53(12):11-20 10.2166/wst.2006.401
    [23] 张燕,周巧红,徐栋,等. 不同C/N下人工湿地的脱氮效果及其强化措施[J]. 环境工程学报,2013,7(11):4246-4250
    [24] LIN Y F, JING S R, WANG T W, et al.Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands[J].Environmental Pollution,2002,119(3):413-420 10.1016/S0269-7491(01)00299-8
    [25] WANG L, LI T.Anaerobic ammonium oxidation in constructed wetlands with bio-contact oxidation as pretreatment[J].Ecological Engineering,2011,37(8):1225-1230 10.1016/j.ecoleng.2011.03.008
    [26] 王俊安,李冬,田智勇,等. 常温下磷酸盐对城市污水厌氧氨氧化的影响[J]. 中国给水排水,2009,25(19):31-33
    [27] CHAO.A.Nonparametric estimation of the number of classes in a population[J].Scandinavian Journal of Statistics,1984,11(4):265-270
    [28] KARTAL B, DE A N M, MAALCKE W, et al.How to make a living from anaerobic ammonium oxidation[J].FEMS Microbiology Reviews,2013,37(3):428-461 10.1111/1574-6976.12014
    [29] JETTEN M.The anaerobic oxidation of ammonium[J].FEMS Microbiology Reviews,1998,22(5):421-437 10.1111/j.1574-6976.1998.tb00379.x
    [30] 李军文,郑金来,晁福寰,等. 一些硝化细菌的分离与鉴定[J]. 应用与环境工程生物学报,2004,10(6):786-789 10.3321/j.issn:1006-687X.2004.06.024
    [31] 陈重军,张海芹,汪瑶琪,等. 基于高通量测序的ABR厌氧氨氧化反应器各隔室细菌群落特征分析[J]. 环境科学,2016,37(7):2652-2658 10.13227/j.hjkx.2016.07.031
    [32] 付融冰,朱宜平,杨海真,等. 连续流湿地中DO、ORP状况及与植物根系分布的关系[J]. 环境科学学报,2008,28(10):2036-2041 10.3321/j.issn:0253-2468.2008.10.016
    [33] STROUS M, PELLETIER E, MANGENOT S, et al.Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J].Nature,2006,440(7085):790-794 10.1038/nature04647
  • 加载中
计量
  • 文章访问数:  3273
  • HTML全文浏览数:  2829
  • PDF下载数:  480
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-04-22

MTF-CWs工艺对剩余污泥厌氧消化液的强化脱氮效果

  • 1. 西安建筑科技大学环境与市政工程学院,西安 710055
  • 2. 铜川市污水处理厂,铜川 727000
基金项目:

陕西省重点科技创新团队计划(2017KCT-19-01)

高等学校博士学科点专项科研基金(20116120110008)

摘要: 采用多级潮汐流人工湿地(multi-stage tidal flow constructed wetlands, MTF-CWs)处理城市污水处理厂剩余污泥厌氧消化液(excess sludge anaerobic digester liquids, ES-ADL),以垂直潮汐流的运行方式强化硝化,并根据进水NH4+-N和TN浓度分为2种不同工况。实验结果表明:在进水COD、NH4+-N和TN浓度分别为(293.68±9.62)、(845.70±11.53)和(847.00±11.47)mg·L-1的条件下(工况1),出水COD、NH4+-N和TN浓度分别为(84.47±8.10)、(8.81±1.74)和(351.50±7.78)mg·L-1,COD、NH4+-N和TN的平均去除率分别为72.45%、98.93%和56.48%;在进水COD、NH4+-N和TN浓度分别为(413.31±7.47)、(1 023.85±8.32)和(1 025.78±8.31)mg·L-1的条件下(工况2),出水COD、NH4+-N和TN浓度分别为(51.60±6.05)、(9.58±3.13)和(359.92±7.68)mg·L-1。COD、NH4+-N和TN的平均去除率分别为87.34%、99.05%和64.68%。在上述2种工况条件下,可将城市污水处理厂ES-ADL回流引起的氮循环累积量分别降低58.50%和62.19%。溶解氧消耗计算结果表明:MTF-CWs并没有提供NH4+-N的氧化(全程硝化或短程硝化过程)所需要的溶解氧;氮平衡计算结果表明:2种工况条件下通过非传统硝化-反硝化途径(如厌氧氨氧化)去除的总氮负荷分别占据总氮去除负荷的86.30%和82.53%。采用Miseq高通量测序技术进行菌群分析,结果表明:在反硝化脱氮贡献最大的人工湿地单元存在大量的厌氧氨氧化细菌Candidatus Kuenenia,且其占比随着取样深度(0.05~0.20 m)增加而增加(其丰度由5.08%增加到13.18%),表明MTF-CWs处理ES-ADL时存在厌氧氨氧化途径。

English Abstract

参考文献 (33)

目录

/

返回文章
返回