Fenton法处理电镀有机废水

仙光, 张光明, 刘毓璨, 朱佳, 张楠, 杨安琪. Fenton法处理电镀有机废水[J]. 环境工程学报, 2018, 12(4): 1007-1012. doi: 10.12030/j.cjee.201710049
引用本文: 仙光, 张光明, 刘毓璨, 朱佳, 张楠, 杨安琪. Fenton法处理电镀有机废水[J]. 环境工程学报, 2018, 12(4): 1007-1012. doi: 10.12030/j.cjee.201710049
XIAN Guang, ZHANG Guangming, LIU Yucan, ZHU Jia, ZHANG Nan, YANG Anqi. Treatment of electroplating organic wastewater by Fenton process[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1007-1012. doi: 10.12030/j.cjee.201710049
Citation: XIAN Guang, ZHANG Guangming, LIU Yucan, ZHU Jia, ZHANG Nan, YANG Anqi. Treatment of electroplating organic wastewater by Fenton process[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1007-1012. doi: 10.12030/j.cjee.201710049

Fenton法处理电镀有机废水

  • 基金项目:

    北京市自然科学基金资助项目(8172028)

    深圳市科技创新委员会资助项目(JSKF20150901115155532)

Treatment of electroplating organic wastewater by Fenton process

  • Fund Project:
  • 摘要: 采用Fenton法处理某电镀厂强碱性有机废水。考察了pH和Fenton氧化对废水特性的影响,优化了处理参数,研究了Fenton氧化对废水可生化性的影响。结果表明:Fenton氧化前,调节pH可提高有机物去除效果,一定程度上去除重金属;Fenton法能够有效处理电镀有机废水,并充分提高废水可生化性,最高COD去除率可达75%;在反应时间为30 min、H2O2投加量为68 mg·L-1、Fe2+投加量为111 mg·L-1条件下,废水COD去除率为22%,B/C为0.28,适宜后续接入生化工艺以进一步提高废水处理效果,可降低成本并提高处理效率,为电镀企业处理强碱性有机废水提供参考。
  • 加载中
  • [1] 汪晴, 熊杰, 叶锦韶. 电镀行业重金属在线回收清洁生产技术[J]. 生态科学, 2015, 34(4): 163-168 10.14108/j.cnki.1008-8873.2015.04.026
    [2] 王琳, 宫艳艳, 刘君成, 等. 新型羧甲基纤维素钠桥联FeS深度处理含镍电镀废水的研究[J]. 水处理技术, 2017, 36(1): 27-30 10.16796/j.cnki.1000-3770.2017.01.006
    [3] 张大林, 李祥, 仇海波. 电镀废水处理及回用工程[J]. 水处理技术,2015,41(9):129-132 10.16796/j.cnki.1000-3770.2015.09.033
    [4] GARG K, RAWAT P, PRASAD B.Removal of Cr (VI) and COD from electroplating wastewater by corncob based activated carbon[J].International Journal of Water and Wastewater Treatment,2015,1(1):1-9 10.16966/2381-5299.102
    [5] GUAN W, TIAN S, CAO D, et al.Electrooxidation of nickel-ammonia complexes and simultaneous electrodeposition recovery of nickel from practical nickel-electroplating rinse wastewater[J].Electrochimica Acta,2017,246:1230-1236 10.1016/j.electacta.2017.06.121
    [6] 王友安, 赵桂芳, 赵慧捷, 等. 电镀行业污染控制与环境治理[J]. 工业安全与环保,2008,34(11):52-53
    [7] 吴健良, 曾建新, 蓝俊宏, 等.Fenton-接触氧化联合工艺处理铁合金镀件电镀前处理废水[J]. 环境工程学报,2014,8(11):4707-4714
    [8] 刘伟, 王水, 张龙, 等.Fenton氧化-强化混凝-UF/RO协同处理电镀综合废水[J]. 环境科技,2016,29(3):27-31
    [9] 曾建新, 吴健良, 蓝俊宏, 等.Fenton技术处理锌合金镀件电镀前处理废水[J]. 电镀与涂饰,2013,33(4):165-167 10.19289/j.1004-227x.2014.04.008
    [10] XU J, LONG Y, SHEN D, et al.Optimization of Fenton treatment process for degradation of refractory organics in pre-coagulated leachate membrane concentrates[J].Journal of Hazardous Materials,2017,323:674-680 10.1016/j.jhazmat.2016.10.031
    [11] 杨小兵, 杨勤, 邓国平. 电镀废水有机污染物去除方法研究进展[J]. 广东化工,2013,40(24):102-103
    [12] GANZENKO O, HUGUENOT D, HULLEBUSCH E, et al.Electrochemical advanced oxidation and biological processes for wastewater treatment: A review of the combined approaches[J].Environmental Science and Pollution Research,2014,21(14):8493-8524 10.1007/s11356-014-2770-6
    [13] 姜妍, 蒋林时, 苗时雨, 等. 紫外-Fenton法处理高盐有机废水[J]. 环境工程学报,2016,10(5):2349-2354 10.12030/j.cjee.201412143
    [14] 李诗瑶, 姚创, 罗晓栋, 等.Fe/C微电解联合Fenton法处理综合电镀废水[J]. 广东化工,2016,43(10):150-151
    [15] ZHAO X, WANG H, CHEN F, et al.Efficient treatment of an electroplating wastewater containing heavy metal ions, cyanide, and organics by H2O2 oxidation followed by the anodic Fenton process[J].Water Science and Technology,2013,68(6):1329-1335 10.2166/wst.2013.296
    [16] KABDASLI I, ARSLAN T, ARSLAN-ALATON I, et al.Organic matter and heavy metal removals from complexed metal plating effluent by the combined electrocoagulation/Fenton process[J].Water Science and Technology,2010,61(10):2617-2624 10.2166/wst.2010.202
    [17] HUANG R, HE J, ZHAO J, et al Fenton-biological treatment of reverse osmosis membrane concentrate from a metal plating wastewater recycle system[J].Environmental Technology,2011,32(5):515-522 10.1080/09593330.2010.504747
    [18] 徐东川. 铁炭微电解/Fenton/生物接触氧化处理电镀废水[J]. 中国给水排水,2013,29(14):77-79
    [19] 叶宽伟, 万先凯, 蒋健翔, 等. 电镀废水有机污染物的电催化氧化中试研究[J]. 水处理技术,2011,37(2):65-68 10.16796/j.cnki.1000-3770.2011.02.016
    [20] 彭明志. 活性炭处理电镀废水[J]. 电镀与涂饰,2014,33(11):482-486 10.19289/j.1004-227x.2014.11.010
    [21] 陈艳, 董秉直, 詹俊英, 等.pH对粉末活性炭去除有机物的影响[J]. 给水排水,2004,30(5):13-16
    [22] 郑淑平, 李亚静, 孙力平.pH值对垃圾渗滤液中溶解有机物检测的影响即分析[J]. 环境工程,2013,31(4):123-125
    [23] 何华良, 刘国光, 姚坤, 等. 臭氧辅助UV/Fenton法处理电镀添加剂生产废水[J]. 环境工程学报,2013,7(12):4678-4682
    [24] VENTURA A, JACQUET G, BERMOND A, et al.Electrochemical generation of the Fenton’s reagent: Application to atrazine degradation[J].Water Research,2002,36(14):3517-3522 10.1016/S0043-1354(02)00064-7
    [25] LI J, ZHAO L, QIN L, et al.Removal of refractory organics in nanofiltration concentrates of municipal solid waste leachate treatment plants by combined Fenton oxidative-coagulation with photo-Fenton processes[J].Chemosphere,2016,146:442-449 10.1016/j.chemosphere.2015.12.069
    [26] 刘剑玉, 汪晓军.Fenton化学氧化法深度处理精细化工废水[J]. 环境科学与技术,2009,32(5):141-143
    [27] 肖惠群, 顾早立, 陶智伟, 等.Fenton氧化法预处理并提高垃圾渗沥液可生化性的研究[J]. 环境科学学报,2015,35(12):3937-3942 10.13671/j.hjkxxb.2015.0479
    [28] 王毅, 冯辉霞, 张婷, 等. 泡沫分离-Fenton氧化处理炼油废水[J]. 中国给水排水,2010,26(4):58-60
    [29] 张婷, 冯辉霞, 张娟, 等.Fe2O3/H2O2类芬顿法处理阴离子表面活性剂废水的试验[J]. 净水技术,2013,32(2):39-42 10.15890/j.cnki.jsjs.2013.02.007
    [30] COLLIVIGNARELLI M, PEDRAZZANI R, SORLINI S, et al.H2O2 based oxidation processes for the treatment of real high strength aqueous wastes[J].Sustainability,2017,9(2):244-258 10.3390/su9020244
    [31] KHORSANDI H, MOHAMMADI A, KARIMINEJAD F, et al.Optimizing linear alkyl benzene sulfonate removal using Fenton oxidation process in Taguchi Method[J].Journal of Water Chemistry and Technology,2016,38(5):266-272 10.3103/S1063455X16050040
  • 加载中
计量
  • 文章访问数:  4512
  • HTML全文浏览数:  3814
  • PDF下载数:  639
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-04-22

Fenton法处理电镀有机废水

  • 1. 中国人民大学环境学院,北京 100872
  • 2. 陆军勤务学院军事设施系,重庆 401311
  • 3. 深圳职业技术学院建筑与环境工程学院,深圳 518055
基金项目:

北京市自然科学基金资助项目(8172028)

深圳市科技创新委员会资助项目(JSKF20150901115155532)

摘要: 采用Fenton法处理某电镀厂强碱性有机废水。考察了pH和Fenton氧化对废水特性的影响,优化了处理参数,研究了Fenton氧化对废水可生化性的影响。结果表明:Fenton氧化前,调节pH可提高有机物去除效果,一定程度上去除重金属;Fenton法能够有效处理电镀有机废水,并充分提高废水可生化性,最高COD去除率可达75%;在反应时间为30 min、H2O2投加量为68 mg·L-1、Fe2+投加量为111 mg·L-1条件下,废水COD去除率为22%,B/C为0.28,适宜后续接入生化工艺以进一步提高废水处理效果,可降低成本并提高处理效率,为电镀企业处理强碱性有机废水提供参考。

English Abstract

参考文献 (31)

目录

/

返回文章
返回