电催化氧化降解水体中抗生素磺胺

王慧晴, 李燕, 司友斌, 吴康, 周晨, YOUSAFAmina. 电催化氧化降解水体中抗生素磺胺[J]. 环境工程学报, 2018, 12(3): 779-787. doi: 10.12030/j.cjee.201709210
引用本文: 王慧晴, 李燕, 司友斌, 吴康, 周晨, YOUSAFAmina. 电催化氧化降解水体中抗生素磺胺[J]. 环境工程学报, 2018, 12(3): 779-787. doi: 10.12030/j.cjee.201709210
WANG Huiqing, LI Yan, SI Youbin, WU Kang, ZHOU Chen, YOUSAF Amina. Electro-catalytic oxidative degradation of sulfonamide in water[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 779-787. doi: 10.12030/j.cjee.201709210
Citation: WANG Huiqing, LI Yan, SI Youbin, WU Kang, ZHOU Chen, YOUSAF Amina. Electro-catalytic oxidative degradation of sulfonamide in water[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 779-787. doi: 10.12030/j.cjee.201709210

电催化氧化降解水体中抗生素磺胺

  • 基金项目:

    国家自然科学基金资助项目(41471405)

    大学生创新创业训练计划资助项目(201610364026)

    农田生态保育与污染防控安徽省重点实验室开放基金资助项目(FECPP 201705)

Electro-catalytic oxidative degradation of sulfonamide in water

  • Fund Project:
  • 摘要: 采用电催化氧化方式降解水体中抗生素磺胺(sulfonamide,SA),考察SA初始浓度、溶液pH、电流强度、电解质种类和浓度对SA降解的影响,运用循环伏安法和水杨酸自由基捕获法研究电催化降解SA的作用机制,并通过LC-MS 分析电催化SA的降解产物。结果表明: SA初始浓度0.12 mmol·L-1、溶液pH为3.0、电流强度20 mA·cm-2、电解质Na2SO4浓度为50 mmol·L-1时,电催化氧化降解3 h后SA降解率为89.2%; 电催化氧化降解SA的一级反应是直接氧化和间接氧化共同作用的过程,一部分SA分子在阳极表面通过电子转移直接氧化生成一级产物,另一部分SA 分子与电解体系产生的·OH发生间接氧化,2种一级产物继续被·OH氧化,生成马来酸和富马酸。
  • 加载中
  • [1] VERA H, LUCIA S.Degradation and removal methods of antibiotics from aqueous matrices: review[J].Journal of Environmental Management,2011,92(10):2304-2347 10.1016/j.jenvman.2011.05.023
    [2] YI L, LIN X, MICHAL R, et al.Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the haihe river basin, China[J].Environmental Science and Technology,2011,45(5):1827-1833 10.1021/es104009s
    [3] DIRANY A, SIRES I, OTURAN N, et al.Electrochemical treatment of the antibiotic sulfachloropyridazine: Kinetics, reaction pathways, and toxicity evolution[J].Environmental Science & Technology,2012,46(7):4074- 4082 10.1021/es204621q
    [4] STRAUB J O.Aquatic environmental risk assessment for human use of the old antibiotic sulfamethoxazole in Europe[J].Environmental Toxicology & Chemistry,2015,35(4):767-779 10.1002/etc.2945
    [5] ZOU S C, XU W H, ZHANG R J, et al.Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities[J].Environmental Pollution,2011,159(10):2913-2920 10.1016/j.envpol.2011.04.037
    [6] CHEN K, ZHOU J L.Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China[J].Chemosphere,2014,95:604-612 10.1016/j.chemosphere.2013.09.119
    [7] GUINEA E, GARRIDO J A, RODRIGUEZ R M, et al.Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration[J].Electrochimica Acta,2010,55(6):2101- 2115 10.1016/j.electacta.2009.11.040
    [8] HAN W Q, CHEN Y, WANG L J, et al.Mechanism and kinetics of electrochemical degradation of isothiazolin- ones using Ti/SnO2-Sb/PbO2 anode[J].Desalination,2011,276(1/2/3):82- 88 10.1016/j.desal.2011.03.027
    [9] 邢林林,张景志,姜安平,等. 焦化废水臭氧催化氧化过程的污染物降解特征[J].环境工程学报,2017,11(4):2001-2006 10.12030/j.cjee.201510144
    [10] 张磊,赵吉昊,许家维,等.CeO2-ZrO2固溶体在催化湿式空气氧化苯酚废水中的作用[J].环境科学学报,2017,37(7):2642-2648 10.13671/j.hjkxxb.2016.0468
    [11] OFIASKA A, PIECZYNSK A, BORZYSZKOWSKA.Pt-TiO2 - assisted photocatalytic degradation of the cytostatic drugs ifosfamide and cyclophosphamide under artificial sunlight[J].Chemical Engineering Journal,2016,285:417-427 10.1016/j.cej.2015.09.109
    [12] YAHYA M S, KARBANE M, OTURAN N, et al.Mineralization of the antibiotic levofloxacin in aqueous medium by electro-Fenton process: Kinetics and intermediates products analysis[J].Environmental Technology,2016,37(10):1276-1287 10.1080/09593330.2015.1111427
    [13] LI D, TANG J Y, ZHOU X Z, et al.Electrochemical degradation of pyridine by Ti/SnO2-Sb tubular porous electrode[J].Chemosphere,2016,149:49-56 10.1016/j.chemosphere.2016.01.078
    [14] KIM S R,PARK W,HONG H, et al.Quinone electrochemistry altered by local hydrophobic environment and hydrogen bonding interactions[J].Electrochemistry Communications,2014,41:39-43 10.1016/j.elecom.2014.01.005
    [15] TISA F, RAMAN A A A R, DAUD W M A W.Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: A review[J].Journal of Environmental Management,2014,146:260-275 10.1016/j.jenvman.2014.07.032
    [16] ZHAO W, XING J T, CHEN D H, et al.Electrochemical degradation of musk ketone in aqueous solutions using a novel porous Ti/SnO2-Sb2O3/PbO2 electrodes[J].Journal of Electroanalytical Chemistry,2016,775:179-188 10.1016/j.jelechem.2016.05.050
    [17] SUKUL P, SPITELLER M.Sulfonamides in the environment as veterinary drugs[J].Reviews of Environmental Contamination & Toxicology,2006,187:67-101 10.1007/978-1-4612-1280-5_2
    [18] 耿榕,赵国华,刘梅川,等.掺硼金刚石膜电极表面产生羟基自由基的原位ESR研究[J].物理化学学报,2010,26(6):1493-1498
    [19] BASFAR A A, KHAN H M, Al-SHAHRANI A A.Trihalomethane treatment using gamma irradiation: kinetic modeling of single solute and mixtures[J].Radiation Physics and Chemistry,2005,72(5):555-563 10.1016/j.radphyschem.2004.04.137
    [20] NIU J, LI Y, SHANG E, et al.Electrochemical oxidation of perfluorinated compounds in water[J].Chemosphere,2016,146:526-538 10.1016/j.chemosphere.2015.11.115
    [21] 张剑,张巍,任少波,等.偶氮基作为可离去导向基团辅助的C—H键定向硝化反应:区域专一性地合成邻苯二胺类化合物[J]. 有机化学,2015,35(3):647-654
    [22] 蒋朦.电化学体系中羟基自由基的检测及生成规律的影响研究[D].西安:西安建筑科技大学,2015
    [23] MOREIRA C F,SOLER J,ALPENDURADA M F,et al.Tertiary treatment of a municipal wastewater toward pharmaceuticals removal by chemical and electrochemical advanced oxidation processes[J].Water Research,2016,105:251-263 10.1016/j.watres.2016.08.036
    [24] TEIXIDó M,PIGNATELLO J J,BELTRáN J L, et al.Speciation of the ionizable antibiotic sulfamethazine on black carbon(biochar)[J].Environmental Science and Technology, 2011,45(23):10020-10027 10.1021/es202487h
    [25] NIHAL O, ENRIC B, MEHMET A, et al.Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode[J].Environmental Chemistry Letters,2012,10(2):165-170 10.1007/s10311-011-0337-z
    [26] 王炼,张钱丽,王东田,等. 高性能二氧化铅电极制备及降解邻甲酚[J]. 环境工程学报,2016,10(4):1657-1664
    [27] 吕江维, 曲有鹏,田家宇,等. 循环伏安法测定电极电催化活性的实验设计[J]. 实验室研究与探索,2015,34(11):30-33 10.3969/j.issn.1006-7167.2015.11.009
    [28] 陈再明. 不同解离性质有机污染物在生物碳上的吸附行为、分子机理及其定量关系[D]. 杭州:浙江大学,2014
    [29] XIAO Y D, FANG M, ZHONG X Y, et al.Comparative studies on the electro-catalytic oxidation performance of surfactant–carbon nanotube-modified PbO2 electrodes[J].Journal of Electroanalytical Chemistry,2012,256:90-100 10.1016/j.jelechem.2012.05.012
    [30] GOMES F, SOUZA N, GALINARO C, et al.Electrochemical degradation of butyl paraben on platinum and glassy carbon electrodes[J].Journal of Electroanalytical Chemistry,2016,769:124-130 10.1016/j.jelechem.2016.03.016
    [31] 吴迪.羟基自由基在电催化氧化体系中的形成规律及其在废水处理中的应用研究[D].长春:吉林大学,2007
    [32] 李杰,于瑞祥.高效液相色谱法测定淀粉与饮料中马来酸和富马酸[J].实验室研究与探索,2015,34(3):55-57 10.3969/j.issn.1006-7167.2015.03.015
    [33] 卓琼芳,邓述波,许振成,等.电化学氧化PFOA阳极材料筛选及其机制研究[J].环境科学,2014,35(5):1810-1816 10.13227/j.hjkx.2014.05.025
    [34] XIAO M S, ZHANG Y G.Electro-catalytic oxidation of phenacetin with a three-dimensional reactor: Degradation pathway and removal mechanism[J].Chemosphere,2016,152:17-22. 10.1016/j.chemosphere.2015.12.026
  • 加载中
计量
  • 文章访问数:  4835
  • HTML全文浏览数:  4410
  • PDF下载数:  649
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-03-22
王慧晴, 李燕, 司友斌, 吴康, 周晨, YOUSAFAmina. 电催化氧化降解水体中抗生素磺胺[J]. 环境工程学报, 2018, 12(3): 779-787. doi: 10.12030/j.cjee.201709210
引用本文: 王慧晴, 李燕, 司友斌, 吴康, 周晨, YOUSAFAmina. 电催化氧化降解水体中抗生素磺胺[J]. 环境工程学报, 2018, 12(3): 779-787. doi: 10.12030/j.cjee.201709210
WANG Huiqing, LI Yan, SI Youbin, WU Kang, ZHOU Chen, YOUSAF Amina. Electro-catalytic oxidative degradation of sulfonamide in water[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 779-787. doi: 10.12030/j.cjee.201709210
Citation: WANG Huiqing, LI Yan, SI Youbin, WU Kang, ZHOU Chen, YOUSAF Amina. Electro-catalytic oxidative degradation of sulfonamide in water[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 779-787. doi: 10.12030/j.cjee.201709210

电催化氧化降解水体中抗生素磺胺

  • 1. 安徽农业大学资源与环境学院,农田生态保育与污染防控安徽省重点实验室,合肥 230036
基金项目:

国家自然科学基金资助项目(41471405)

大学生创新创业训练计划资助项目(201610364026)

农田生态保育与污染防控安徽省重点实验室开放基金资助项目(FECPP 201705)

摘要: 采用电催化氧化方式降解水体中抗生素磺胺(sulfonamide,SA),考察SA初始浓度、溶液pH、电流强度、电解质种类和浓度对SA降解的影响,运用循环伏安法和水杨酸自由基捕获法研究电催化降解SA的作用机制,并通过LC-MS 分析电催化SA的降解产物。结果表明: SA初始浓度0.12 mmol·L-1、溶液pH为3.0、电流强度20 mA·cm-2、电解质Na2SO4浓度为50 mmol·L-1时,电催化氧化降解3 h后SA降解率为89.2%; 电催化氧化降解SA的一级反应是直接氧化和间接氧化共同作用的过程,一部分SA分子在阳极表面通过电子转移直接氧化生成一级产物,另一部分SA 分子与电解体系产生的·OH发生间接氧化,2种一级产物继续被·OH氧化,生成马来酸和富马酸。

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回