无机阴离子对热活化过硫酸盐体系中降解MDEA模拟废水的影响

李永涛, 赖连珏, 岳东. 无机阴离子对热活化过硫酸盐体系中降解MDEA模拟废水的影响[J]. 环境工程学报, 2018, 12(3): 788-795. doi: 10.12030/j.cjee.201709118
引用本文: 李永涛, 赖连珏, 岳东. 无机阴离子对热活化过硫酸盐体系中降解MDEA模拟废水的影响[J]. 环境工程学报, 2018, 12(3): 788-795. doi: 10.12030/j.cjee.201709118
LI Yongtao, LAI Lianjue, YUE Dong. Effects of inorganic anions on persulfate heat-activation for degradation of methyldiethanolamine (MDEA) simulated wastewater[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 788-795. doi: 10.12030/j.cjee.201709118
Citation: LI Yongtao, LAI Lianjue, YUE Dong. Effects of inorganic anions on persulfate heat-activation for degradation of methyldiethanolamine (MDEA) simulated wastewater[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 788-795. doi: 10.12030/j.cjee.201709118

无机阴离子对热活化过硫酸盐体系中降解MDEA模拟废水的影响

  • 基金项目:

    中石化集团公司项目(部759)

Effects of inorganic anions on persulfate heat-activation for degradation of methyldiethanolamine (MDEA) simulated wastewater

  • Fund Project:
  • 摘要: 采用热活化过硫酸盐技术处理MDEA模拟废水,阐明了降解过程中Cl-、CO32-、HCO3-对降解过程的影响。结果表明:无机阴离子的存在会抑制MDEA的降解过程,其中 CO32-与HCO3-单独存在于体系中对MDEA的抑制作用与其浓度呈正相关,离子浓度较高时(0.3 mol·L-1),反应3 h,抑制率分别达到19%与11.5%,而Cl-单独存在于体系时,浓度小于0.1 mol·L-1时,抑制作用呈正相关;浓度在0.1~0.3 mol·L-1时,其抑制作用与浓度呈负相关;氯离子浓度为0.1 mol·L-1时为最大抑制浓度,其抑制率为15%。共生抑制响应曲面分析表明,3种无机阴离子之间交互作用显著,受与SO4-·的反应速率常数控制,抑制的显著性大小为Cl->CO32->HCO3-。
  • 加载中
  • [1] 聂振夏. 普光气田MDEA法脱硫脱碳工艺技术[J]. 石化技术,2017,24(3):77-77
    [2] 王志刚, 陶兆勇, 段贤勇,等. 天然气净化厂SO2减排技术的应用及讨论[J]. 天然气与石油,2017,35(1):60-63
    [3] 张昆, 王娜, 贾腾,等. 天然气处理厂天然气净化工艺技术优化[J]. 化学工程与装备,2017(2):102-103
    [4] 符媛. 天然气净化中选择性吸收技术研究[J]. 中国石油和化工标准与质量,2017,37(9):189-190
    [5] FüRHACKER M, PRESSL A, ALLABASHI R.Aerobic biodegradability of methyldiethano-lamine (MDEA) used in natural gas sweetening plants in batch tests and continuous flow experiments[J].Chemosphere,2003,52(10):1743-1748 10.1016/S0045-6535(03)00371-0
    [6] PAL P, ABUKASHABEH A, Al-ASHEH S, et al.Accumulation of heat stable salts and degraded products during thermal degradation of aqueous methyldiethanolamine (MDEA) using microwave digester and high pressure reactor[J].Journal of Natural Gas Science & Engineering,2014,21:1043-1047 10.1016/j.jngse.2014.11.007
    [7] LI Y T, YUE D, WANG B, et al.Degradation of MDEA in aqueous solution in the thermally activated persulfate system[J].Environmental Technology,2016,38(6):730-736 10.1080/09593330.2016.1210239
    [8] 黎雷,高乃云,胡玲,等. 阴离子对UV/H2O2/微曝气工艺降解双酚A的影响[J]. 中国环境科学,2008,28(3):233-236
    [9] DEVI L G, RAJUU K S A, KUMAR S G, et al.Photo-degradation of di azo dye bismarck brown by advanced photo-Fenton process: Influence of inorganic anions and evaluation of recycling efficiency of iron powder[J].Journal of the Taiwan Institute of Chemical Engineers,2011,42(2):341-349 10.1016/j.jtice.2010.05.010
    [10] LIU Y, ZHOU A, GAN Y, et al.Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions[J].Science of the Total Environment,2016,1:548-549 10.1016/j.scitotenv.2016.01.011
    [11] JI Y, DONG C, KONG D, et al.Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides[J].Chemical Engineering Journal,2015,263:45-54 10.1016/j.cej.2014.10.097
    [12] WANG Z, YUAN R, GUO Y, et al.Effects of chloride ions on bleaching of azo dyes by Co2+ /oxone regent: Kinetic analysis[J].Journal of Hazardous Materials,2011,190(1/2/3):1083-1087 10.1016/j.jhazmat.2011.04.016
    [13] SHIH Y J, LI Y C, HUANG Y H.Application of UV/persulfate oxidation process for mineralization of 2,2,3,3-tetrafluoro-1-propanol[J].Journal of the Taiwan Institute of Chemical Engineers,2013,44(2):287-290 10.1016/j.jtice.2012.10.005
    [14] LI J, REN Y, JI F Z, et al.Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe2O4, magneticnano-particles[J].Chemical Engineering Journal,2017,324:63-73 10.1016/j.cej.2017.04.104
    [15] GUO Y, ZENG Z, LI Y, et al.In-situ sulfur-doped carbon as a metal-free catalyst for persulfate activated oxidation of aqueous organics[J/OL]. [2017-09-01].Catalysis Today,2017.https://doi.org/10.1016/j.cattod.2017.05.080 10.1016/j.cattod.2017.05.080
    [16] OSIEWALA L, SOCHA A, PEREK A, et al.Electrochemical, photochemical, and photoelectrochemical treatment of sodium p -cumenesulfonate[J].Water Air & Soil Pollution,2013,224(9):1-14 10.1007/s11270-013-1657-3
    [17] BENNEDSEN L R, MUFF J, S?QAARD E G.Influence of chloride and carbonates on the reactivity of activated persulfate[J].Chemosphere,2012,86(11):1092-1097 10.1016/j.chemosphere.2011.12.011
    [18] DENG J, SHAO Y, GAO N, et al.Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water[J].Chemical Engineering Journal,2013,222(2):150-158 10.1016/j.cej.2013.02.045
    [19] 狄军贞,赵微,朱志涛,等. 响应曲面法优化强化混凝工艺处理微污染水[J]. 环境工程学报,2017,11(1):27-32 10.12030/j.cjee.201508164
  • 加载中
计量
  • 文章访问数:  4373
  • HTML全文浏览数:  3867
  • PDF下载数:  548
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-03-22
李永涛, 赖连珏, 岳东. 无机阴离子对热活化过硫酸盐体系中降解MDEA模拟废水的影响[J]. 环境工程学报, 2018, 12(3): 788-795. doi: 10.12030/j.cjee.201709118
引用本文: 李永涛, 赖连珏, 岳东. 无机阴离子对热活化过硫酸盐体系中降解MDEA模拟废水的影响[J]. 环境工程学报, 2018, 12(3): 788-795. doi: 10.12030/j.cjee.201709118
LI Yongtao, LAI Lianjue, YUE Dong. Effects of inorganic anions on persulfate heat-activation for degradation of methyldiethanolamine (MDEA) simulated wastewater[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 788-795. doi: 10.12030/j.cjee.201709118
Citation: LI Yongtao, LAI Lianjue, YUE Dong. Effects of inorganic anions on persulfate heat-activation for degradation of methyldiethanolamine (MDEA) simulated wastewater[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 788-795. doi: 10.12030/j.cjee.201709118

无机阴离子对热活化过硫酸盐体系中降解MDEA模拟废水的影响

  • 1. 西南石油大学化学化工学院,成都 610500
  • 2. 四川省环境保护油气田污染防治与环境安全重点实验室,成都 610500
基金项目:

中石化集团公司项目(部759)

摘要: 采用热活化过硫酸盐技术处理MDEA模拟废水,阐明了降解过程中Cl-、CO32-、HCO3-对降解过程的影响。结果表明:无机阴离子的存在会抑制MDEA的降解过程,其中 CO32-与HCO3-单独存在于体系中对MDEA的抑制作用与其浓度呈正相关,离子浓度较高时(0.3 mol·L-1),反应3 h,抑制率分别达到19%与11.5%,而Cl-单独存在于体系时,浓度小于0.1 mol·L-1时,抑制作用呈正相关;浓度在0.1~0.3 mol·L-1时,其抑制作用与浓度呈负相关;氯离子浓度为0.1 mol·L-1时为最大抑制浓度,其抑制率为15%。共生抑制响应曲面分析表明,3种无机阴离子之间交互作用显著,受与SO4-·的反应速率常数控制,抑制的显著性大小为Cl->CO32->HCO3-。

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回