HKUST-1晶格空位的构建及对偶氮染料吸附的影响

王蕾, 张金苗, 吕建波, 熊振湖. HKUST-1晶格空位的构建及对偶氮染料吸附的影响[J]. 环境工程学报, 2018, 12(5): 1334-1345. doi: 10.12030/j.cjee.201709188
引用本文: 王蕾, 张金苗, 吕建波, 熊振湖. HKUST-1晶格空位的构建及对偶氮染料吸附的影响[J]. 环境工程学报, 2018, 12(5): 1334-1345. doi: 10.12030/j.cjee.201709188
WANG Lei, ZHANG Jinmiao, LYU Jianbo, XIONG Zhenhu. Construction of lattice vacancy in HKUST-1 and effect on adsorption of azo dyes[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1334-1345. doi: 10.12030/j.cjee.201709188
Citation: WANG Lei, ZHANG Jinmiao, LYU Jianbo, XIONG Zhenhu. Construction of lattice vacancy in HKUST-1 and effect on adsorption of azo dyes[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1334-1345. doi: 10.12030/j.cjee.201709188

HKUST-1晶格空位的构建及对偶氮染料吸附的影响

  • 基金项目:

    国家自然科学基金资助项目(50878138,51108298)

    天津市水质科学与技术重点实验室开放基金资助项目(TJKLAST-PT-2016-05)

Construction of lattice vacancy in HKUST-1 and effect on adsorption of azo dyes

  • Fund Project:
  • 摘要: 采用1,3-苯二甲酸与1,3,5-苯三甲酸不同摩尔比例的混合配体策略,制备了4类具有晶格空位的Cu基金属有机框架化合物HKUST-1,并研究了其对刚果红和亚甲基蓝的吸附性能。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、BET比表面积测定仪、热重分析仪(TGA)进行表征,证实了HKUST-1晶格空位的框架结构与稳定性,晶格空位HKUST-1的BET表面积和总孔容(1 220 m2·g-1和0.62 cm3·g-1)均大于初始HKUST-1(698 m2·g-1和0.40 cm3·g-1)。吸附实验表明,由于尺寸排阻效应,晶格空位HKUST-1的构建增加了与刚果红的结合能力,且与亚甲基蓝相比,晶格空位HKUST-1对刚果红具有更高的吸附选择性。随着有机配体1,3-苯二甲酸与1,3,5-苯三甲酸的摩尔比例(0:1, 1:1, 2:1, 3:1)的增加,晶格空位HKUST-1对刚果红的吸附去除效果随之增加,室温、pH 6.0条件下,Langmuir吸附量增加了1.53倍,Langmuir最大吸附量为528.03 mg·g-1,吸附过程符合准二级动力学和Langmuir吸附等温线模型。
  • 加载中
  • [1] Mcguire C V, Forgan R S.The surface chemistry of metal-organic frameworks.[J].Chemical Communications, 2015, 51(25):5199-5217
    [2] Howarth A J, Liu Y, Hupp J T, et al.Metal–organic frameworks for applications in remediation of oxyanion/cation-contaminated water[J].Crystengcomm, 2015, 17(38):7245-7253 10.1039/c5ce01428j
    [3] Hasan Z, Jhung S H.Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions[J].Journal of Hazardous Materials, 2015, 283:329-39 10.1016/j.jhazmat.2014.09.046
    [4] Li B, Chrzanowski M, Zhang Y, et al.Applications of metal-organic frameworks featuring multi-functional sites[J].Coordination Chemistry Reviews, 2016, 307:106-129 10.1016/j.ccr.2015.05.005
    [5] Jiang J, Yaghi O M.Br?nsted acidity in metal–organic frameworks[J].Chemical Reviews, 2015, 115(14): 6966–6997 10. 1021/acs.chemrev.5b00221
    [6] Tan F, Min L, Li K, et al.Facile synthesis of size-controlled MIL-100(Fe) with excellent adsorption capacity for methylene blue[J].Chemical Engineering Journal, 2015, 281(1):360-367 10.1016/j.cej.2015.06.044
    [7] Xie L, Liu D, Huang H, et al.Efficient capture of nitrobenzene from waste water using metal–organic frameworks[J].Chemical Engineering Journal, 2014, 246(16):142-149 10.1016/j.cej.2014.02.070
    [8] Chen Q, He Q, LV M, et al.Selective adsorption of cationic dyes by UiO-66-NH2[J].Applied Surface Science, 2015, 327:77-85 10.1016/j.apsusc.2014.11.103
    [9] Khan N A, Hasan Z, Jhung S H.Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review[J].Journal of Hazardous Materials, 2013, 244-245(2):444-456 10.1016/j.jhazmat.2012.11.011
    [10] Jung B K, Hasan Z, Jhung S H.Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from water with a metal–organic framework[J].Chemical Engineering Journal, 2013, 234(12):99-105
    [11] Wu H, Chua Y S, Krungleviciute V, et al.Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption[J].Journal of the American Chemical Society, 2013, 135(28):10525-10532 10.1021/ja404514r
    [12] Li B, Zhu X, Hu K, et al.Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution[J].Journal of Hazardous Materials, 2016, 302:57-64 10.1016/j.jhazmat.2015.09.040
    [13] RAVON U, DOMINE M E, GAUDILLERE C, et al.MOF-5 as acid catalyst with shape selectivity properties[J].Studies in Surface Science & Catalysis, 2008, 174(8):467-470 10.1016/S0167-2991(08)80242-X
    [14] Thornton A W, Babarao R, Jain A, et al.Defects in metal-organic frameworks: A compromise between adsorption and stability[J].Dalton Transactions, 2015, 45(10):4352-4359
    [15] Fang Z, Bueken B, De V D, et al.Defect-engineered metal-organic frameworks[J].Angewandte Chemie International Edition, 2015, 54(25):7234-7254 10.1002/anie.201411540
    [16] Jung B K, Jun J W, Hasan Z, et al.Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8[J].Chemical Engineering Journal, 2015, 267:9-15 10.1021/je4010239
    [17] Wee L H, Lohe M R, Janssens N, et al.Fine tuning of the metal–organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range[J].Journal of Materials Chemistry, 2012, 22(27):13742-13746
    [18] Lin K Y A, Hsieh Y T.Copper-based metal organic framework (MOF), HKUST-1, as an efficient adsorbent to remove p-nitrophenol from water[J].Journal of the Taiwan Institute of Chemical Engineers, 2015, 50:223-228
    [19] Lin K Y A, Yang H, Petit C, et al.Removing oil droplets from water using a copper-based metal organic frameworks[J].Chemical Engineering Journal, 2014, 249:293-301 10.1016/j.cej.2014.03.107
    [20] Liu B, Yang F, Zou Y, et al.Adsorption of phenol and p-nitrophenol from aqueous solutions on metal–organic frameworks: Effect of hydrogen bonding[J].Journal of Chemical & Engineering Data, 2014, 59(5):1476–1482 10.1021/je4010239
    [21] 吴艳,罗汉金,王侯.改性木屑对水中刚果红的吸附性能研究[J].环境科学学报,2014,34(7):1680-1688 10. 13671/j.hjkxxb.2014.0510
    [22] Xu Y, Jin J, Li X, et al.Fabrication of hybrid magnetic HKUST-1 and its high efficient adsorption performance for congo red dye[J].Rsc Advances, 2015, 5(25):19199-19202
    [23] 于岩.新型水相吸附材料[M].北京:科学出版社,2016:48-58
    [24] Conde-González J E, Pe?a-Méndez E M, Rybáková S, et al.Adsorption of silver nanoparticles from aqueous solution on copper-based metal organic frameworks (HKUST-1)[J].Chemosphere, 2016, 150:659-666 10.1016/j.chemosphere. 2016.02.005
    [25] Taylor J M, Dekura S, Ikeda R, et al.Defect control to enhance proton conductivity in a metal–organic framework[J].Chemistry of Materials, 2015, 27(7):2286-2289 10.1021/acs.chemmater.5b00665
    [26] Ho Y S, Mckay G.Pseudo-second order model for sorption processes[J].Process Biochemistry, 1999, 34(5):451-465
    [27] Bordiga S, Regli L, Bonino F, et al.Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR[J].Physical Chemistry Chemical Physics,2007,9(21):2676-2685
    [28] LI C, XIONG Z, ZHANG J, et al.The strengthening role of the amino group in metal–organic framework MIL-53 (Al) for methylene blue and malachite green dye adsorption[J].Journal of Chemical & Engineering Data, 2015, 60(11): 3414-3422 10.1021/ acs.jced.5b00692
    [29] Risse K, Fu?Llenbach F, Rummel T, et al.Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads[J].Journal of Environmental Radioactivity,2013,126:226-231 10.1016/j.jenvrad.2013.08.010
    [30] Moradi S E, Dadfarnia S, Shabani A M H, et al.Removal of congo red from aqueous solution by its sorption onto the metal organic framework MIL-100(Fe): Equilibrium, kinetic and thermodynamic studies[J].Desalination & Water Treatment, 2015, 56(3):709-721 10.1080/19443994.2014.947328
    [31] Hasan Z, Choi E J, Jhung S H.Adsorption of naproxen and clofibric acid over a metal–organic framework MIL-101 functionalized with acidic and basic groups[J].Chemical Engineering Journal, 2013, 219(3):537-544
  • 加载中
计量
  • 文章访问数:  3474
  • HTML全文浏览数:  3124
  • PDF下载数:  472
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-05-19

HKUST-1晶格空位的构建及对偶氮染料吸附的影响

  • 1. 天津大学环境科学与工程学院,天津300072
  • 2. 天津城建大学环境与市政工程学院,天津市水质科学与技术重点实验室,天津300384
基金项目:

国家自然科学基金资助项目(50878138,51108298)

天津市水质科学与技术重点实验室开放基金资助项目(TJKLAST-PT-2016-05)

摘要: 采用1,3-苯二甲酸与1,3,5-苯三甲酸不同摩尔比例的混合配体策略,制备了4类具有晶格空位的Cu基金属有机框架化合物HKUST-1,并研究了其对刚果红和亚甲基蓝的吸附性能。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、BET比表面积测定仪、热重分析仪(TGA)进行表征,证实了HKUST-1晶格空位的框架结构与稳定性,晶格空位HKUST-1的BET表面积和总孔容(1 220 m2·g-1和0.62 cm3·g-1)均大于初始HKUST-1(698 m2·g-1和0.40 cm3·g-1)。吸附实验表明,由于尺寸排阻效应,晶格空位HKUST-1的构建增加了与刚果红的结合能力,且与亚甲基蓝相比,晶格空位HKUST-1对刚果红具有更高的吸附选择性。随着有机配体1,3-苯二甲酸与1,3,5-苯三甲酸的摩尔比例(0:1, 1:1, 2:1, 3:1)的增加,晶格空位HKUST-1对刚果红的吸附去除效果随之增加,室温、pH 6.0条件下,Langmuir吸附量增加了1.53倍,Langmuir最大吸附量为528.03 mg·g-1,吸附过程符合准二级动力学和Langmuir吸附等温线模型。

English Abstract

参考文献 (31)

目录

/

返回文章
返回