3种表面修饰活性炭对水体中磷的吸附

张莹, 张程, 谭琲琳, 张梦娇, 王生丽, 王莉淋. 3种表面修饰活性炭对水体中磷的吸附[J]. 环境工程学报, 2018, 12(5): 1346-1354. doi: 10.12030/j.cjee.201709074
引用本文: 张莹, 张程, 谭琲琳, 张梦娇, 王生丽, 王莉淋. 3种表面修饰活性炭对水体中磷的吸附[J]. 环境工程学报, 2018, 12(5): 1346-1354. doi: 10.12030/j.cjee.201709074
ZHANG Ying, ZHANG Cheng, TAN Beilin, ZHANG Mengjiao, WANG Shengli, WANG Lilin. Adsorption of phosphate from water to three kinds of surface modified activated carbons[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1346-1354. doi: 10.12030/j.cjee.201709074
Citation: ZHANG Ying, ZHANG Cheng, TAN Beilin, ZHANG Mengjiao, WANG Shengli, WANG Lilin. Adsorption of phosphate from water to three kinds of surface modified activated carbons[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1346-1354. doi: 10.12030/j.cjee.201709074

3种表面修饰活性炭对水体中磷的吸附

  • 基金项目:

    国家自然科学基金资助项目(21307085)

    四川省科技计划项目(2017SZ0039)

Adsorption of phosphate from water to three kinds of surface modified activated carbons

  • Fund Project:
  • 摘要: 为克服活性炭磷吸附能力有限的问题,使用ZnCl2、十六烷基三甲基氯化铵(CTAC)和Fe/Al(氢)氧化物纳米颗粒分别研究了物理结构法、表面活性剂法和载体法3 种表面修饰方法对活性炭磷吸附能力的影响。实验发现,载体法为3 种方法中最好的修饰方法。对载体法制备吸附剂的材料用量的比较发现,在Fe(III)和Al(III)摩尔比为9 :1 的条件下,把1.5 g活性炭加入到总浓度为1 mol·L-1的200 mL Fe(III)和Al(III)混合溶液中,形成的纳米Fe/Al(氢)氧化物能够较好地利用活性炭表面,该复合材料1.5AC-Fe/Al在磷平衡浓度约为50 mg·L-1时吸附量达到29.3mg·g-1。该材料表征结果表明,纳米Fe/Al(氢)氧化物颗粒被成功负载在活性炭表面。在酸性条件下,复合材料表面的—H+和—OH2+所引起的静电吸附和配位交换是促进吸附带负电磷酸根离子的原因。
  • 加载中
  • [1] SCHINDLER D W, CARPENTER S R, CHAPRA S C, et al.Reducing phosphorus to curb lake eutrophication is a success[J].Environmental Science & Technology, 2016, 50(17): 8923-8929 10.1021/acs.est.6b02204
    [2] NI Z, WANG S, WANG Y.Characteristics of bioavailable organic phosphorus in sediment and its contribution to lake eutrophication in China[J].Environment Pollution, 2016, 219(12): 537-544 10.1016/j.envpol.2016.05.087
    [3] MEINIKMANN K, HUPFER M, LEWANDOWSKI J.Phosphorus in groundwater discharge:A potential source for lake eutrophication[J].Journal of Hydrology, 2015, 524(9/10): 214-226 10.1016/j.jhydrol.2015.02.031
    [4] HOODA P S, WILKINSON J, MILLIER H.Phosphorus and emerging micro-pollutants in surface waters: Challenges and prospects for waters quality improvements[J].International Journal of Sustainable Water & Environmental Systems, 2014, 6(7): 27- 33 10.5383/swes.06.01.0003
    [5] NUR T, JOHIR M A H, LOGANATHAN P, et al.Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin[J].Journal of Industrial & Engineering Chemistry, 2014, 20(4): 1301-1307 10.1016/j.jiec.2013.07.009
    [6] YAN L, XU Y, YU H, et al.Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron–aluminum pillared bentonites[J].Journal of Hazardous Materials, 2010, 179(1/2/3): 244-250 10.1016/j.jhazmat.2010.02.086
    [7] MEZENNER N Y, BENSMAILI A.Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste[J].Chemical Engineering Journal, 2009, 147(2/3): 87-96 10.1016/j.cej.2008.06.024
    [8] ZENG W, WANG A, ZHANG J, et al.Enhanced biological phosphate removal from wastewater and clade-level population dynamics of “ Candidatus, Accumulibacter phosphatis” under free nitrous acid inhibition: Linked with detoxication[J].Chemical Engineering Journal, 2016, 296:234-242 10.1016/j.cej.2016.03.063
    [9] HUANG H, LIUJ, ZHANG L, et al.Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation[J].Chemical Engineering Journal, 2016, 307(1):696-706 10.1016/j.cej.2016.08.134
    [10] ZHU X, ALEXANDRATOS S D.Development of a new ion-exchange/coordinating phosphate ligand for the sorption of U(VI) and trivalent ions from phosphoric acid solutions[J].Chemical Engineering Science, 2015, 127(9):126-132 10.1016/j.ces.2015.01.027
    [11] SONG L, HUO J, WANG X, et al.Phosphate adsorption by a Cu(II)-loaded polyethersulfone-type metal affinity membrane with the presence of coexistent ions[J].Chemical Engineering Journal, 2016, 284(1):182-193 10.1016/j.cej.2015.08.146
    [12] TOFIK A S, TADDESSE A M, TESFAHUN K T, et al.Fe–Al binary oxide nanosorbent: Synthesis, characterization and phosphate sorption property[J].Journal of Environmental Chemical Engineering, 2016, 4(2): 2458-2468 10.1016/j.jece.2016.04.023
    [13] ZHOU Q, WANG X, LIU J, et al.Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by sol–gel method[J].Chemical Engineering Journal, 2012, 200-202(16): 619-626 10.1016/j.cej.2012.06.123
    [14] LIU J, ZHOU Q, CHEN J, et al.Phosphate adsorption on hydroxyl–iron–lanthanum doped activated carbon fiber[J].Chemical Engineering Journal, 2013, 215-216(2): 859-867 10.1016/j.cej.2012.11.067
    [15] SHARPLEY A N, BERGSTR?M L, ARONSSON H, et al.Future agriculture with minimized phosphorus losses to waters: Research needs and direction[J].Ambio, 2015, 44(2):163-179 10.1007/s13280-014-0612-x
    [16] PHILLIPS B L, ZHANG Z, KUBISTA L, et al.NMR spectroscopic study of organic phosphate esters coprecipitated with calcite[J].Geochimicaet Cosmochimica Acta, 2016, 183(9/10): 46-62 10.1016/j.gca.2016.03.022
    [17] KILPIMAA S, RUNTTI H, KANGAS T, et al.Removal of phosphate and nitrate over a modified carbon residue from biomass gasification[J].Chemical Engineering Research & Design, 2014, 92(10): 1923-1933 10.1016/j.cherd.2014.03.019
    [18] JIANG C, JIA L, HE Y, et al.Adsorptive removal of phosphorus from aqueous solution using sponge iron and zeolite[J].Journal of Colloid & Interface Science, 2013, 402(14): 246-252 10.1016/j.jcis.2013.03.057
    [19] 张传光, 张乃明, 于秀芳. 热改性斜发沸石对富营养化水体的脱氮除磷效果[J]. 环境工程学报, 2013, 7(5):1665-1670
    [20] DELANEY P, MCMANAMON C, HANRAHAN J P, et al.Development of chemically engineered porous metal oxides for phosphate removal[J].Journal of Hazardous Materials, 2011, 185(1): 382-391 10.1016/j.jhazmat.2010.08.128
    [21] 吕建波, 郝婧, 苏润西,等. 聚合氯化铝混凝强化新生态铁锰复合氧化物吸附去除水中的磷[J]. 环境工程学报, 2014, 8(7):2817-2821
    [22] BHATNAGAR A, HOGLAND W, MARQUES M, et al.An overview of the modification methods of activated carbon for its water treatment applications[J].Chemical Engineering Journal, 2013, 219(3): 499-511 10.1016/j.cej.2012.12.038
    [23] WANG T, TAN S, LIANG C.Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation[J].Carbon, 2009, 47 (7): 1880-1883 10.1016/j.carbon.2009.03.035
    [24] WANG X, PING N, YAN S, et al.Adsorption of low concentration phosphine in yellow phosphorus off-gas by impregnated activated carbon[J].Journal of Hazardous Materials, 2009, 171(1/2/3): 588-593 10.1016/j.jhazmat.2009.06.046
    [25] FAROOQ W, HONG H J, KIM E J, et al.Removal of bromate from water using cationic surfactant-modified powdered activated carbon (SM-PAC)[J].Separation Science and Technology, 2012, 47(13): 1906-1912 10.1080/01496395.2012.664232
    [26] HONG H J, KIM H, BAEK K, et al.Removal of arsenate, chromate and ferricyanide by cationic surfactant modified powdered activated carbon[J].Desalination, 2008, 223(1): 221-228 10.1016/j.desal.2007.01.210
    [27] HYUNDOC C, WOOSUNG J, JUNGMIN C, et al.Adsorption of Cr(VI) onto cationic surfactant-modified activated carbon[J].Journal of Hazardous Materials, 2009, 166(2/3): 642-646 10.1016/j.jhazmat.2008.11.076
    [28] CHO D W, CHON C M, KIM Y, et al.Adsorption of nitrate and Cr(VI) by cationic polymer-modified granular activated carbon[J].Chemical Engineering Journal, 2011, 175(1): 298-305 10.1016/j.cej.2011.09.108
    [29] LIN S, CHEN W, CHENG M, et al.Investigation of factors that affect cationic surfactant loading on activated carbon and perchlorate adsorption[J].Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2013, 434(2): 236-242 10.1016/j.colsurfa.2013.05.048
    [30] CHEN W, ZHANG Z, LI Q, et al.Adsorption of bromate and competition from oxyanions on cationic surfactant-modified granular activated carbon (GAC)[J].Chemical Engineering Journal, 2012, 203(5): 319-325 10.1016/j.cej.2012.07.047
    [31] ZHU M, DING K, XU S, et al.Adsorption of phosphate on hydroxyaluminum- and hydroxyiron-montmorillonite complexes[J].Journal of Hazardous Materials, 2009, 165(1/2/3): 645-651 10.1016/j.jhazmat.2008.10.035
    [32] LI G, GAO S, ZHANG G, et al.Enhanced adsorption of phosphate from aqueous solution by nanostructured iron(III)–copper(II) binary oxides[J].Chemical Engineering Journal, 2014, 235(1): 124-131 10.1016/j.cej.2013.09.021
    [33] WANG Z, SHI M, LI J, et al.Influence of moderate pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing activated carbon[J].Journal of Environmental Sciences, 2014, 26(3): 519-528 10.1016/S1001-0742(13)60440-4
    [34] 童婧, 杨朝晖, 曾光明, 等. 锆、铁氧化物改性活性炭纤维的制备及其除磷性能[J]. 环境工程学报, 2016, 10(6): 2881-2888 10.12030/j.cjee.201501044
    [35] 孙霄, 盛梅, 沈晓强,等. 载纳米铁花生壳的制备及其吸附除磷性能[J]. 环境工程学报, 2017, 11(1): 386-392 10.12030/j.cjee.201508205
    [36] ZHANG L, ZHOU Q, LIU J, et al.Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber[J].Chemical Engineering Journal, 2012, 185-186(6): 160-167 10.1016/j.cej.2012.01.066
    [37] ZHANG L, WAN L, CHANG N, et al.Removal of phosphate from water by activated carbon fiber loaded with lanthanum oxide[J].Journal of Hazardous Materials, 2011, 190(1/2/3): 848-855 10.1016/j.jhazmat.2011.04.021
    [38] 梁美娜,刘海玲,朱义年,等. 复合铁铝氢氧化物的制备及其对水中砷(As)的去除[J]. 环境科学学报, 2006, 26(3): 438-446
    [39] HARVEY O R, RHUE R D.Kinetics and energetics of phosphate sorption in a multi-component Al(III)-Fe(III) hydr(oxide) sorbent system[J].Journal of Colloid & Interface Science, 2008, 322(2): 384-393 10.1016/j.jcis.2008.03.019
    [40] LV J, LIU H, LIU R, et al.Adsorptive removal of phosphate by a nanostructured Fe–Al–Mn trimetal oxide adsorbent[J].Powder Technology, 2013, 233(1): 146-154 10.1016/j.powtec.2012.08.024
    [41] 郑雯婧, 林建伟, 詹艳慧,等. 镧和阳离子表面活性剂联合改性活性炭对水中磷酸盐和硝酸盐的吸附作用[J]. 环境化学, 2015,34(5): 939-948
    [42] KUMAR P, SUDHA S, CHAND S, et al.Phosphate removal from aqueous solution using coir-pith activated carbon[J].Separation Science and Technology, 2010, 45(10): 1463-1470 10.1080/01496395.2010.485604
  • 加载中
计量
  • 文章访问数:  3360
  • HTML全文浏览数:  2929
  • PDF下载数:  475
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-05-19

3种表面修饰活性炭对水体中磷的吸附

  • 1. 四川农业大学环境学院,四川省农业环境工程重点实验室,成都 611130
  • 2. 四川农业大学资源学院,成都611130
基金项目:

国家自然科学基金资助项目(21307085)

四川省科技计划项目(2017SZ0039)

摘要: 为克服活性炭磷吸附能力有限的问题,使用ZnCl2、十六烷基三甲基氯化铵(CTAC)和Fe/Al(氢)氧化物纳米颗粒分别研究了物理结构法、表面活性剂法和载体法3 种表面修饰方法对活性炭磷吸附能力的影响。实验发现,载体法为3 种方法中最好的修饰方法。对载体法制备吸附剂的材料用量的比较发现,在Fe(III)和Al(III)摩尔比为9 :1 的条件下,把1.5 g活性炭加入到总浓度为1 mol·L-1的200 mL Fe(III)和Al(III)混合溶液中,形成的纳米Fe/Al(氢)氧化物能够较好地利用活性炭表面,该复合材料1.5AC-Fe/Al在磷平衡浓度约为50 mg·L-1时吸附量达到29.3mg·g-1。该材料表征结果表明,纳米Fe/Al(氢)氧化物颗粒被成功负载在活性炭表面。在酸性条件下,复合材料表面的—H+和—OH2+所引起的静电吸附和配位交换是促进吸附带负电磷酸根离子的原因。

English Abstract

参考文献 (42)

目录

/

返回文章
返回