Fe3O4@PEG@SiO2人工抗体的制备及其对噻吩磺隆的吸附性能

漆天瑶, 周杨群, 席小倩, 陈倩云, 刘辰辰, 丁丽云, 汪丛, 高大明. Fe3O4@PEG@SiO2人工抗体的制备及其对噻吩磺隆的吸附性能[J]. 环境工程学报, 2018, 12(5): 1326-1333. doi: 10.12030/j.cjee.201709092
引用本文: 漆天瑶, 周杨群, 席小倩, 陈倩云, 刘辰辰, 丁丽云, 汪丛, 高大明. Fe3O4@PEG@SiO2人工抗体的制备及其对噻吩磺隆的吸附性能[J]. 环境工程学报, 2018, 12(5): 1326-1333. doi: 10.12030/j.cjee.201709092
QI Tianyao, ZHOU Yangqun, XI Xiaoqian, CHEN Qianyun, LIU Chenchen, DING Liyun, WANG Cong, GAO Daming. Preparation of Fe3O4@PEG@SiO2 artificial antibody and its adsorption performance for thifensulfuron methyl[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1326-1333. doi: 10.12030/j.cjee.201709092
Citation: QI Tianyao, ZHOU Yangqun, XI Xiaoqian, CHEN Qianyun, LIU Chenchen, DING Liyun, WANG Cong, GAO Daming. Preparation of Fe3O4@PEG@SiO2 artificial antibody and its adsorption performance for thifensulfuron methyl[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1326-1333. doi: 10.12030/j.cjee.201709092

Fe3O4@PEG@SiO2人工抗体的制备及其对噻吩磺隆的吸附性能

  • 基金项目:

    国家自然科学基金资助项目(21606066,21075026)

    安徽省自然科学基金资助项目(1708085QB46)

    安徽省大学生创新创业项目(201611059091)

Preparation of Fe3O4@PEG@SiO2 artificial antibody and its adsorption performance for thifensulfuron methyl

  • Fund Project:
  • 摘要: 以FeCl2·4H2O和FeCl3·6H2O为原料采用共沉淀法制备Fe3O4磁性纳米粒子,在其表面修饰聚乙二醇 2000(PEG-2000),在所得的修饰了PEG-2000的Fe3O4磁性纳米粒子溶液中加入模板分子噻吩磺隆、交联剂正硅酸乙酯和催化剂氨水,水解后制得印迹了噻吩磺隆的Fe3O4@PEG@SiO2人工抗体。用体积比为1:4的乙酸和丙酮溶液为洗脱剂,洗脱位于SiO2壳层中的印迹分子,形成具有与印迹分子结构、大小和功能基团互补的特异性识别位点空穴。制备的Fe3O4@PEG@SiO2人工抗体对目标分析物噻吩磺隆分子选择性识别和吸附,对噻吩磺隆的最大饱和结合量为41.28 mg·g-1,前30 min内,其吸附速率为0.45 mg·(min·g)-1,分别是非印迹方法的5.34倍和3.46倍。
  • 加载中
  • [1] 李新安. 噻吩磺隆的四种环境行为研究[D]. 新乡: 河南科技学院,2012
    [2] 贾大伟, 田秉晖, 张国珍, 等.Fe3O4纳米磁性微粒对全氟辛烷磺酸盐的吸附[J]. 环境工程学报,2012,6(2):389-392
    [3] 展思辉, 张宇, 朱丹丹, 等. 磁性Fe3O4纳米颗粒的制备及在水处理中的应用[J]. 环境工程学报,2016,10(1):1-11
    [4] 刘徽, 田秉晖, 王三反, 等.纳米Fe3O4磁性粒子的制备及吸附性能研究[J]. 环境工程学报,2010,4(4):781-784
    [5] DENG Y, QI D, DENG C, et al.Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins[J].Journal of the American Chemical Society,2008,130(1):28-29 10.1021/ja0777584
    [6] QIU H, CUI B, LI G, et al.Novel Fe3O4@ZnO@mSiO2 nanocarrier for targeted drug delivery and controllable release with microwave irradiation[J].Journal of Physical Chemistry C,2014,118(27):14929-14937 10.1021/jp502820r
    [7] ZHU Y, KOCKRICK E, IKOMA T, et al.An efficient route to rattle-type Fe3O4@SiO2 hollow mesoporous spheres using colloidal carbon spheres templates[J].Chemistry of Materials,2009,21(12):2547-2553 10.1021/cm900956j
    [8] MOREL A L, NIKITENKO S I, GIONNET K, et al.Sonochemical approach to the synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable properties[J].ACS Nano,2008,2(5):847-856 10.1021/nn800091q
    [9] PALANI A, LEE J S, HUH J, et al.Selective enrichment of cysteine-containing peptides using SPDP-functionalized superparamagnetic Fe3O4@SiO2 nanoparticles: Application to comprehensive proteomic profiling[J].Journal of Proteome Research,2008,7(8):3591-3596 10.1021/pr800067x
    [10] WEHNER T, MANDEL K, SCHNEIDER M, et al.Superparamagnetic luminescent MOF@Fe3O4/SiO2 composite particles for signal augmentation by magnetic harvesting as potential water detectors[J].Applied Materials & Interfaces,2016,8(8):5445-5452 10.1021/acsami.5b11965
    [11] PATIL U S, QU H, CARUNTU D, et al.Labeling primary amine groups in peptides and proteins with N-hydroxysuccinimidyl ester modified Fe3O4@SiO2 nanoparticles containing cleavable disulfide-bond linkers[J].Bioconjugate Chemistry,2013,24(9):1562-1569 10.1021/bc400165r
    [12] HU H, WANG Z, PAN L, et al.Ag-coated Fe3O4@SiO2 three-ply composite microspheres: Synthesis, characterization, and application in detecting melamine with their surface-enhanced raman scattering[J].Journal of Physical Chemistry C,2010,114(17):7738-7742 10.1021/jp100141c
    [13] LI X, LIU D, SONG S, et al.Fe3O4@SiO2@TiO2@Pt hierarchical core–shell microspheres: Controlled synthesis, enhanced degradation system, and rapid magnetic separation to recycle[J].Crystal Growth Design,2014,14(11):5506-5511 10.1021/cg501164c
    [14] SHEN J, ZHU Y, YANG X, et al.Multifunctional Fe3O4@Ag/SiO2/Au core–shell microspheres as a novel SERS-activity label via long-range plasmon coupling[J].Langmuir,2013,29(2):690-695 10.1021/la304048v
    [15] WANG H, ZHANG W, ZHAO J, et al.Rapid decolorization of phenolic azo dyes by immobilized laccase with Fe3O4/SiO2 nanoparticles as support[J].Industrial & Engineering Chemistry Research,2013,52(12):4401-4407 10.1021/ie302627c
    [16] ZHAO P, TIAN L, LI X, et al.Effect of the structure and length of flexible chains on dendrimers grafted Fe3O4@SiO2/PAMAM magnetic nanocarriers for lipase immobilization[J].Sustainable Chemistry & Engineering,2016,4(12):6382-6390 10.1021/acssuschemeng.6b00967
    [17] CHEN L, BERRY R M, TAM K C.Synthesis of β-cyclodextrin-modified cellulose nanocrystals (CNCs)@Fe3O4@SiO2 superparamagnetic nanorods[J].ACS Sustainable Chemistry & Engineering, 2014,2(4):951-958 10.1021/sc400540f
    [18] ZHU Y, FANG Y, KASKEL S.Folate-conjugated Fe3O4@SiO2 hollow mesoporous spheres for targeted anticancer drug delivery[J].Journal of Physical Chemistry C, 2010,114(39):16382-16388 10.1021/jp106685q
    [19] MOHAPATRA S, SAHU S, NAYAK S, et al.Design of Fe3O4@SiO2@carbon quantum dot based nanostructure for fluorescence sensing, magnetic separation, and live cell imaging of fluoride ion[J].Langmuir,2015,31(29):8111-8120 10.1021/acs.langmuir.5b01513
    [20] SHAO M, NING F, ZHAO J, et al.Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins[J].Journal of the American Chemical Society,2012,134(2):1071-1077 10.1021/ja2086323
    [21] DING H L, ZHANG Y X, WANG S, et al.Fe3O4@SiO2 core/shell nanoparticles: The silica coating regulations with a single core for different core sizes and shell thicknesses[J].Chemistry of Materials,2012,24(23):4572-4580 10.1021/cm302828d
    [22] GUO X, MAO F, WANG W, et al.Sulfhydryl-modified Fe3O4@SiO2 core/shell nanocomposite: synthesis and toxicity assessment in Vitro[J].ACS Applied Materials & Interfaces,2015,7(27):1983-14991 10.1021/acsami.5b03873
    [23] TONG L, SHI J, LIU D, et al.Luminescent and magnetic properties of Fe3O4@SiO2@Y2O3: Eu3+ composites with core–shell structure[J].Journal of Physical Chemistry C,2012,116(12):7153-7157 10.1021/jp212579t
    [24] 靳艳艳, 程武, 王苗, 等. 单分散羧基化Fe3O4磁性纳米粒子的制备及表征[J]. 科学通报,2014,59(18):1700-1706
    [25] 张琬桐. 哌虫啶分子印迹聚合物的制备及吸附性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015
    [26] ZHANG W, ZHANG Y, JIANG Q, et al.Tetraazacalix[2]arence[2]triazine coated Fe3O4/SiO2 magnetic nanoparticles for simultaneous dispersive solid phase extraction and determination of trace multitarget analytes[J].Analytical Chemistry,2016,88(21):10523-10532 10.1021/acs.analchem.6b02583
    [27] 龚子珊, 丁国生, 唐安娜. 磁性纳米粒子的制备及其在重金属离子处理中的应用[J]. 分析测试学报,2014,33(2):231-238
  • 加载中
计量
  • 文章访问数:  2909
  • HTML全文浏览数:  2593
  • PDF下载数:  352
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-05-19

Fe3O4@PEG@SiO2人工抗体的制备及其对噻吩磺隆的吸附性能

  • 1. 合肥学院生物与环境工程系,合肥 230601
  • 2. 合肥学院化学与材料工程系,合肥 230601
基金项目:

国家自然科学基金资助项目(21606066,21075026)

安徽省自然科学基金资助项目(1708085QB46)

安徽省大学生创新创业项目(201611059091)

摘要: 以FeCl2·4H2O和FeCl3·6H2O为原料采用共沉淀法制备Fe3O4磁性纳米粒子,在其表面修饰聚乙二醇 2000(PEG-2000),在所得的修饰了PEG-2000的Fe3O4磁性纳米粒子溶液中加入模板分子噻吩磺隆、交联剂正硅酸乙酯和催化剂氨水,水解后制得印迹了噻吩磺隆的Fe3O4@PEG@SiO2人工抗体。用体积比为1:4的乙酸和丙酮溶液为洗脱剂,洗脱位于SiO2壳层中的印迹分子,形成具有与印迹分子结构、大小和功能基团互补的特异性识别位点空穴。制备的Fe3O4@PEG@SiO2人工抗体对目标分析物噻吩磺隆分子选择性识别和吸附,对噻吩磺隆的最大饱和结合量为41.28 mg·g-1,前30 min内,其吸附速率为0.45 mg·(min·g)-1,分别是非印迹方法的5.34倍和3.46倍。

English Abstract

参考文献 (27)

目录

/

返回文章
返回