亚硝化颗粒污泥处理低碳高氨氮废水的影响因素

李刚, 王建芳, 沈耀良. 亚硝化颗粒污泥处理低碳高氨氮废水的影响因素[J]. 环境工程学报, 2018, 12(3): 697-704. doi: 10.12030/j.cjee.201709051
引用本文: 李刚, 王建芳, 沈耀良. 亚硝化颗粒污泥处理低碳高氨氮废水的影响因素[J]. 环境工程学报, 2018, 12(3): 697-704. doi: 10.12030/j.cjee.201709051
LI Gang, WANG Jianfang, SHEN Yaoliang. Influencing factors of nitrosation granular sludge treating wastewater with low carbon and high ammonia concentration[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 697-704. doi: 10.12030/j.cjee.201709051
Citation: LI Gang, WANG Jianfang, SHEN Yaoliang. Influencing factors of nitrosation granular sludge treating wastewater with low carbon and high ammonia concentration[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 697-704. doi: 10.12030/j.cjee.201709051

亚硝化颗粒污泥处理低碳高氨氮废水的影响因素

  • 基金项目:

    国家自然科学基金资助项目(51308367,51578353)

Influencing factors of nitrosation granular sludge treating wastewater with low carbon and high ammonia concentration

  • Fund Project:
  • 摘要: 稳定的部分硝化是新型脱氮工艺处理低C/N比高氨氮废水的关键环节。在SBR中,以放置超过30 d的亚硝化颗粒污泥为接种污泥,考察反应器内快速启动亚硝化的可行性和污泥形态变化, 探讨pH和C/N比对颗粒污泥性能和氮转化的影响。结果表明,通过提高进水负荷可快速启动亚硝化反应器,氨氮去除率和亚硝酸盐累积率均在90%以上,由同步反硝化引起的氮损失为20%左右。降低进水pH至7.0,SBR周期运行最高游离氨FA浓度为5.1 mg?L-1,有利于NOB选择性抑制,提高氨氮去除率,出水NO2--N/NH4+-N比值从0.5提高到0.95左右。C/N比高于2,会引起异养微生物的快速增殖,COD去除负荷提高了1.45 kg?(m3?d)-1,AOB受显著抑制,出水NO2--N/NH4+-N由1.0降低至0.65左右,出现颗粒污泥破裂、解体。
  • 加载中
  • [1] SHALINI S S, JOSEPH K.Start-up of the sharon and anammox process in landfill bioreactors using aerobic and anaerobic ammonium oxidizing biomass[J].Bioresource Technology,2013,149(4):474-485 10.1016/j.biortech.2013.09.104
    [2] VALVERDE P B, MAURICIO I M, SIN G.Systematic design of an optimal control system for the Sharon-anammox process[J].Journal of Process Control,2016,39:1-10 10.1016/j.jprocont.2015.12.009
    [3] DOSTA J, VILA J, SANCHO I, et al.Two-step partial nitritation/anammox process in granulation reactors: Start-up operation and microbial characterization[J].Journal of Environmental Management,2015,164(10):196-205 10.1016/j.jenvman.2015.08.023
    [4] PERERA M K, ENGLEHARDT J D, TCHOBANOGLOUS G, et al.Control of nitrification/denitrification in an onsite two chamber intermittently aerated membrane bioreactor with alkalinity and carbon addition: Model and experiment[J].Water Research,2017,115:94-101 10.1016/j.watres.2017.02.019
    [5] WU S, BHATTACHARJEE A S, WEISSBRODT D G, et al.Effect of short term external perturbations on bacterial ecology and activities in a partial nitritation and anammox reactor[J].Bioresource Technology,2016,219:527-535 10.1016/j.biortech.2016.07.118
    [6] SHOW K Y, LEE D J, TAY J H.Aerobic granulation: Advances and challenges[J].Applied Biochemistry & Biotechnology,2012,167(6):1622-1640 10.1007/s12010-012-9609-8
    [7] LAURENI M, FALAS P, ROBIN O, et al.Mainstream partial nitritation and anammox: Long-term process stability and effluent quality at low temperatures[J].Water Research,2016,101:628-639 10.1016/j.watres.2016.05.005
    [8] LI H S, ZHOU S Q, HUANG G T, et al.Achieving stable partial nitritation using endpoint pH control in an SBR treating landfill leachate[J].Process Safety & Environmental Protection,2014,92(3):199-205 10.1016/j.psep.2013.01.005
    [9] LI X, HUANG Y, YUAN Y, et al.Start up and operating characteristics of an external air-lift reflux partial nitritation-anammox integrative reactor[J].Bioresource Technology,2017,238:657-665 10.1016/j.biortech.2017.04.109
    [10] 刘文如, 沈耀良, 丁玲玲, 等. 接种好氧颗粒污泥快速启动硝化工艺的过程研究[J]. 环境科学,2013,34(6):2302-2308 10.13227/j.hjkx.2013.06.047
    [11] WU L, PENG C Y, PENG Y Z, et al.Effect of wastewater COD/N ratio on aerobic nitrifying sludge granulation and microbial population shift[J].Journal of Environmental Sciences,2012,24(2):234-241 10.1016/S1001-0742(11)60719-5
    [12] 王书永, 钱飞跃, 王建芳, 等. 有机物对亚硝化颗粒污泥中功能菌活性的影响[J]. 环境科学,2017,38(1):269-275 10.13227/j.hjkx.201607076
    [13] DONG W, LI S, TAO Y, et al.Aerobic granules formation and simultaneous nitrogen and phosphorus removal treating high strength ammonia wastewater in sequencing batch reactor[J].Bioresource Technology,2014,171(1):211-216 10.1016/j.biortech.2014.08.001
    [14] 赵志瑞, 马斌, 张树军, 等. 高氨氮废水与城市生活污水短程硝化系统菌群比较[J]. 环境科学,2013,34(4):1448-1456 10.13227/j.hjkx.2013.04.022
    [15] ZHAO J T, HUANG J, GUAN M L, et al.Mathematical simulating the process of aerobic granular sludge treating high carbon and nitrogen concentration wastewater[J].Chemical Engineering Journal,2016,306:676-684 10.1016/j.cej.2016.07.098
    [16] 金仁村, 阳广凤, 马春, 等. 乙酸钠和无机盐对部分亚硝化反应器运行性能的影响[J]. 环境科学学报,2010,30(3):504-512
    [17] 季民, 刘灵婕, 翟洪艳, 等. 高浓度游离氨冲击负荷对生物硝化的影响机制[J]. 环境科学,2017,38(1):260-268 10.13227/j.hjkx.201607116
    [18] ANTHONISEN A C, LOEHR R C, PRAKASAM T B, et al.Inhibition of nitrification by ammonia and nitrous acid[J].Journal Water Pollution Control Federation,1976,48(5):835-852
    [19] CHO K, SHIN S G, LEE J, et al.Nitrification resilience and community dynamics of ammonia-oxidizing bacteria with respect to ammonia loading shock in a nitrification reactor treating steel wastewater[J].Journal of Bioscience & Bioengineering,2016,122(2):196-202 10.1016/j.jbiosc.2016.01.009
    [20] SOLIMAN M, ELDYASTI A.Long-term dynamic and pseudo-state modeling of complete partial nitrification process at high nitrogen loading rates in a sequential batch reactors (SBR)[J].Bioresource Technology,2017,233:382-390 10.1016/j.biortech.2017.02.108
    [21] WANG J L, GONG B Z, WANG Y M, et al.The potential multiple mechanisms and microbial communities in simultaneous nitrification and denitrification process treating high carbon and nitrogen concentration saline wastewater[J].Bioresource Technology,2017,243:708-715 10.1016/j.biortech.2017.06.131
    [22] WANG J F, QIAN F Y, LIU X P, et al.Cultivation and characteristics of partial nitrification granular sludge in a sequencing batch reactor inoculated with heterotrophic granules[J].Applied Microbiology & Biotechnology,2016,100(21):9381-9391 10.1007/s00253-016-7797-9
    [23] ZIELINSKA M, BERNAT K, CYAZIK K A, et al.Nitrogen removal from wastewater and bacterial diversity in activated sludge at different COD/N ratios and dissolved oxygen concentrations[J].Journal of Environmental Sciences,2012,24(6):990-998 10.1016/S1001-0742(11)60867-X
    [24] 刘小朋, 王建芳, 钱飞跃, 等. 提高有机负荷对好氧颗粒污泥形成与稳定过程的影响[J]. 环境科学,2015,36(9):3352-3357 10.13227/j.hjkx.2015.09.030
    [25] LUO J H, HAO T W, WEI L, et al.Impact of influent COD/N ratio on disintegration of aerobic granular sludge[J].Water Research,2014,62(7):127-135 10.1016/j.watres.2014.05.037
  • 加载中
计量
  • 文章访问数:  4602
  • HTML全文浏览数:  4108
  • PDF下载数:  758
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-03-22

亚硝化颗粒污泥处理低碳高氨氮废水的影响因素

  • 1. 苏州科技大学环境科学与工程学院,苏州 215009
  • 2. 江苏省环境科学与工程重点实验室,苏州 215009
  • 3. 江苏高校水处理技术与材料协同创新中心,苏州 215009
基金项目:

国家自然科学基金资助项目(51308367,51578353)

摘要: 稳定的部分硝化是新型脱氮工艺处理低C/N比高氨氮废水的关键环节。在SBR中,以放置超过30 d的亚硝化颗粒污泥为接种污泥,考察反应器内快速启动亚硝化的可行性和污泥形态变化, 探讨pH和C/N比对颗粒污泥性能和氮转化的影响。结果表明,通过提高进水负荷可快速启动亚硝化反应器,氨氮去除率和亚硝酸盐累积率均在90%以上,由同步反硝化引起的氮损失为20%左右。降低进水pH至7.0,SBR周期运行最高游离氨FA浓度为5.1 mg?L-1,有利于NOB选择性抑制,提高氨氮去除率,出水NO2--N/NH4+-N比值从0.5提高到0.95左右。C/N比高于2,会引起异养微生物的快速增殖,COD去除负荷提高了1.45 kg?(m3?d)-1,AOB受显著抑制,出水NO2--N/NH4+-N由1.0降低至0.65左右,出现颗粒污泥破裂、解体。

English Abstract

参考文献 (25)

目录

/

返回文章
返回