电化学水处理技术研究进展

胡承志, 刘会娟, 曲久辉. 电化学水处理技术研究进展[J]. 环境工程学报, 2018, 12(3): 677-696. doi: 10.12030/j.cjee.201801179
引用本文: 胡承志, 刘会娟, 曲久辉. 电化学水处理技术研究进展[J]. 环境工程学报, 2018, 12(3): 677-696. doi: 10.12030/j.cjee.201801179
HU Chengzhi, LIU Huijuan, QU Jiuhui. Research progress of electrochemical technologies for water treatment[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 677-696. doi: 10.12030/j.cjee.201801179
Citation: HU Chengzhi, LIU Huijuan, QU Jiuhui. Research progress of electrochemical technologies for water treatment[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 677-696. doi: 10.12030/j.cjee.201801179

电化学水处理技术研究进展

  • 基金项目:

    国家自然科学基金资助项目(51438011,51738013)

Research progress of electrochemical technologies for water treatment

  • Fund Project:
  • 摘要: 电化学方法可以通过电子的定向转移与精确调控,强化环境界面过程的速率和效率,其在水处理与资源化中体现出非凡的特点和优势,成为破解水危机和水污染的重要技术手段。近10年来,电化学水处理与资源化技术发展取得了长足的进步,正在向电极高效、工艺耦合、低碳绿色转变,未来将进一步聚焦功能电极材料设计、高效反应器与组合工艺开发、资源能源的定向转移与回收等重要方向。为深入研究电化学水处理与资源化技术机理,进一步探讨电化学方法在实际工程中的广泛应用,在重点关注电化学应用基础研究和前沿技术的基础上,分别对电絮凝、电氧化、电还原、电渗析/反向电渗析和电吸附技术的研究进展进行了回顾,并对电化学水处理与资源化技术发展进行了总结和展望。
  • 加载中
  • [1] MEKONNEN M M, HOEKSTRA A Y.Four billion people facing severe water scarcity[J].Science Advances,2016,2(2):e1500323 10.1126/sciadv.1500323
    [2] 王绍文. 高浓度有机废水处理技术与工程应用[M].北京:冶金工业出版社, 2003
    [3] 金龙,赵由才,王罗春.Fenton试剂-生物法联合处理有机废水研究进展[J].环境污染治理技术与设备,2002,3(8):52-57
    [4] 孙怡,于利亮,黄浩斌,等. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报,2017,68(5):1743-1756 10.11949/j.issn.0438-1157.20161787
    [5] 林文鹏.电化学法处理工业有机废水新技术研究进展[J].当代化工,2016,45(11): 2638-2641
    [6] 陈刚,李丹阳,张光明.高浓度难降解有机废水处理技术[J].工业水处理,2003,23(3): 13-16
    [7] 徐进,刘豹,兰华春,等. 有机工业废水的电化学处理工艺技术原理与应用[J].净水技术, 2014,33(4):36-40 10.3969/j.issn.1009-0177.2014.04.009
    [8] 聂春红,王宝辉. 电化学工艺处理有机废水的研究进展[J].化工环保,2011,31(4): 327-331 10.3969/j.issn.1006-1878.2011.04.009
    [9] RADJENOVIC J, SEDLAK D L.Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water[J].Environmental Science & Technology, 2015, 49(19): 11292-11302 10.1021/acs.est.5b02414
    [10] JI Q H, YU D W, ZHANG G, et al.Microfluidic flow through polyaniline supported by lamellar-structured graphene for mass-transfer-enhanced electrocatalytic reduction of hexavalent chromium[J].Environmental Science & Technology,2015,49(22):13534-13541 10.1021/acs.est.5b03314
    [11] HUO Z Y, XIE X, YU T, et al.Nanowire-modified three-dimensional electrode enabling low-voltage electroporation for water disinfection[J].Environmental Science & Technology,2016,50(14):7641-7649 10.1021/acs.est.6b01050
    [12] LIU Y, DUSTINLEE J, XIA Q, et al.A graphene-based electrochemical filter for water purification[J].Journal of Materials Chemistry A,2014,2(2):16554-16562 10.1039/C4TA04006F
    [13] 顾冬燕, 贾红华, 伍元东, 等. 利用微生物燃料电池同步降解沼液和三苯基氯化锡[J]. 化工学报,2016,67(5): 2056-2063 10.11949/j.issn.0438-1157.20151527
    [14] 邓会宁, 田明, 杨秀丽, 等. 反电渗析法海洋盐差电池的结构优化与能量分析[J]. 化工学报, 2015,66(5):1919-1924 10.11949/j.issn.0438-1157.20141805
    [15] 张石磊,江旭佳,洪国良,等. 电絮凝技术在水处理中的应用[J]. 工业水处理, 2013,33(1):10-14 10.3969/j.issn.1005-829X.2013.01.003
    [16] 胡承志. 富含Al13与活性氯絮凝剂的电解制备及性能研究[D]. 北京: 中国科学院大学,2006
    [17] HU C Z, WANG S Q, SUN, J Q, et al.An effective method for improving electrocoagulation process:Optimization of Al-13 polymer formation[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,489:234-240 10.1016/j.colsurfa.2015.10.063
    [18] HU C Z, SUN J Q, WANG S Q, et al.Enhanced efficiency in HA removal by electrocoagulation through optimizing flocs properties: Role of current density and pH[J].Separation and Purification Technology,2017,175: 248-254 10.1016/j.seppur.2016.11.036
    [19] CANIZARES P, JIMENEZ C, MARTINEZ F, et al.Study of the electrocoagulation process using aluminum and iron electrodes[J].Industrial & Engineering Chemistry Research,2007,46(19):6189-6195 10.1021/ie070059f
    [20] BAYRAMOGLU M, EYVAZ M, KOBYA M.Treatment of the textile wastewater by electrocoagulation: Economical evaluation[J].Chemical Engineering Journal,2006,128(2):155-161 10.1016/j.cej.2006.10.008
    [21] LIU H J, ZHAO X, QU J H.Electrochemistry for the Environment[M].New York: Springer,2010:245-262
    [22] YU Z S, WEN X H.Screening and identification of yeasts for decolorizing synthetic dyes in industrial wastewater[J].International Biodeterioration & Biodegradation,2005,56(2):109-114 10.1016/j.ibiod.2005.05.006
    [23] VASUDEVAN S, KANNAN B S, LAKSHMI J, et al.Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water[J].Journal of Chemical Technology and Biotechnology,2011,86(3):428-436 10.1002/jctb.2534
    [24] EYVAZ M, KIRLAROGLU M, AKTAS T S, et al.The effects of alternating current electrocoagulation on dye removal from aqueous solutions[J].Chemical Engineering Journal,2009,153(1/2/3):16-22 10.1016/j.cej.2009.05.028
    [25] HUA L C, HUANG C, SU Y C, et al.Effects of electro-coagulation on fouling mitigation and sludge characteristics in a coagulation-assisted membrane bioreactor[J].Journal of Membrane Science,2015,495:29-36 10.1016/j.memsci.2015.07.062
    [26] SARI M A, CHELLAM S.Surface water nanofiltration incorporating (electro) coagulation–microfiltration pretreatment: Fouling control and membrane characterization[J].Journal of Membrane Science,2013,437(12):249-256 10.1016/j.memsci.2013.02.050
    [27] CHELLAM S, SARI M A.Aluminum electrocoagulation as pretreatment during microfiltration of surface water containing NOM: A review of fouling, NOM, DBP, and virus control[J].Journal of Hazardous Materials,2016,304(2):490-501 10.1016/j.jhazmat.2015.10.054
    [28] SUN J, HU C, TONG T, et al.Performance and mechanisms of ultrafiltration membrane fouling mitigation by coupling coagulation and applied electric field in a novel electrocoagulation membrane reactor[J].Environmental Science & Technology,2017,51(15):8544-8551 10.1021/acs.est.7b01189
    [29] PANIZZA M, CERISOLA G.Direct and mediated anodic oxidation of organic pollutants[J].Chemical Reviews,2009,109(12):6541-6569 10.1021/cr9001319
    [30] COMNINELLIS C.Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment[J].Electrochimica Acta,1994,39(11/12):1857-1862 10.1016/0013-4686(94)85175-1
    [31] KAUR P, KUSHWAHA J P, SANGAL V K.Evaluation and disposability study of actual textile wastewater treatment by electro-oxidation method using Ti/RuO2 anode[J].Process Safety & Environmental Protection,2017,111:13-22 10.1016/j.psep.2017.06.004.
    [32] TURRO E, GIANNIS A, COSSU R, et al.Electrochemical oxidation of stabilized landfill leachate on DSA electrodes[J].Journal of Hazardous Materials,2011,190(1/2/3):460-465 10.1016/j.jhazmat.2011.03.085
    [33] PEREZ G, FERNANDEZ-ALBA A R, URTIAGA A M, et al.Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment[J].Water Research,2010,44(9):2763-2772 10.1016/j.watres.2010.02.017
    [34] ZHU X, TONG M, SHI S, et al.Essential explanation of the strong mineralization performance of boron-doped diamond electrodes[J].Environmental Science & Technology,2008,42(13):4914-4920 10.1021/es800298p
    [35] GRGUR B N, MIJIN D Z.A kinetics study of the methomyl electrochemical degradation in the chloride containing solutions[J].Applied Catalysis B: Environmental,2014,147(8):429-438 10.1016/j.apcatb.2013.09.028
    [36] BERGMANN E H M, ROLLIN J, IOURTCHOUK T.The occurrence of perchlorate during drinking water electrolysis using BDD anodes[J].Electrochimica Acta,2009,54(7):2102-2107 10.1016/j.electacta.2008.09.040
    [37] LEFFRANG U, EBERT K, FLORY K, et al.Organic waste destruction by indirect electrooxidation[J].Separation Science & Technology,1995,30(7/8/9):1883-1899 10.1080/01496399508010382
    [38] AYOUB K, NéLIEU S, HULLEBUSCH E D V, et al.Electro-Fenton removal of TNT: Evidences of the electro-chemical reduction contribution[J].Applied Catalysis B: Environmental,2011,104(1/2):169-176 10.1016/j.apcatb.2011.02.016
    [39] MOHAJERI S, AZIZ H A, ISA M H, et al.Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique[J].Journal of Hazardous Materials,2010,176(1/2/3):749-758 10.1016/j.jhazmat.2009.11.099
    [40] KURT U, APAYDIN O, GONULLU T M.Reduction of COD in wastewater from an organized tannery industrial region by electro-fenton process[J].Journal of Hazardous Materials,2006,143(1):33-40 10.1016/j.jhazmat.2006.08.065
    [41] BROWN R K, HARNISCH F, DOCKHORN T, et al.Examining sludge production in bioelectrochemical systems treating domestic wastewater[J].Bioresource Technology,2015,198:913-917 10.1016/j.biortech.2015.09.081
    [42] DOMINGUEZ-RAMOS A, ALDACO R, IRABIEN A.Photovoltaic solar electrochemical oxidation (PSEO) for treatment of lignosulfonate wastewater[J].Journal of Chemical Technology & Biotechnology,2010,85(6):821-830 10.1002/jctb.2370
    [43] KIM J, CHOI W J K, CHOI J, et al.Electrolysis of urea and urine for solar hydrogen[J].Catalysis Today,2013,199: 2-7 10.1016/j.cattod.2012.02.009
    [44] MAO X H, CIBLAK A, AMIRI M, et al.Redox control for electrochemical dechlorination of trichloroethylene in bicarbonate aqueous media[J].Environmental Science & Technology,2011,45(15):6517-6523 10.1021/es200943z
    [45] MARTINEZ-HUITLE C A, RODRIGO M A, SIRES I, et al.Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: A critical review[J].Chemical Reviews,2015,115(24):13362-13407 10.1021/acs.chemrev.5b00361
    [46] AVRAHAM E, NOKED M, SOFFER A, et al.The feasibility of boron removal from water by capacitive deionization[J].Electrochimica Acta,2011,56(18):6312-6317 10.1016/j.electacta.2011.05.037
    [47] RODRIGUEZ-VALADEZ F, ORTIZ-EXIGA C, IBANEZ J G, et al.Electroreduction of Cr(VI) to Cr(III) on reticulated vitreous carbon electrodes in a parallel-plate reactor with recirculation[J].Environmental Science & Technology,2005,39(6):1875-1879 10.1021/es049091g
    [48] WIGGINS-CAMACHO J D, STEVENSON K J.Indirect electrocatalytic degradation of cyanide at nitrogen-doped carbon nanotube electrodes[J].Environmental Science & Technology,2011,45(8):3650-3656 10.1021/es104229m
    [49] ZOU B X, LIU X X, DIAMOND D, et al.Electrochemical synthesis of WO3/PANI composite for electrocatalytic reduction of iodate[J].Electrochimica Acta,2010,55(12):3915-3920 10.1016/j.electacta.2010.02.034
    [50] XU Y H, ZHANG H, CHU C P, et al.Dechlorination of chloroacetic acids by electrocatalytic reduction using activated silver electrodes in aqueous solutions of different pH[J].Journal of Electroanalytical Chemistry,2012,664:39-45 10.1016/j.jelechem.2011.10.010
    [51] BEARD K D, VAN ZEE J W, MONNIER J R.Preparation of carbon-supported Pt-Pd electrocatalysts with improved physical properties using electroless deposition methods[J].Applied Catalysis B:Environmental,2009,88(1/2):185-193 10.1016/j.apcatb.2008.09.033
    [52] REGO R, OLIVEIRA C, VELAZQUEZ A, et al.A new route to prepare carbon paper-supported Pd catalyst for oxygen reduction reaction[J].Electrochemistry Communications,2010,12(6):745-748 10.1016/j.elecom.2010.03.022
    [53] ZHU K R, BAIG S A, XU J, et al.Electrochemical reductive dechlorination of 2,4-dichlorophenoxyacetic acid using a palladium/nickel foam electrode[J].Electrochimica Acta,2012,69:389-396 10.1016/j.electacta.2012.03.038
    [54] WU Y F, GAN L, ZHANG S P, et al.Enhanced electrocatalytic dechlorination of para-chloronitrobenzene based on Ni/Pd foam electrode[J].Chemical Engineering Journal,2017,316:146-153 10.1016/j.cej.2017.01.024
    [55] KORSHIN G V, JENSEN M D.Electrochemical reduction of haloacetic acids and exploration of their removal by electrochemical treatment[J].Electrochimica Acta,2001,47(5):747-751 10.1016/S0013-4686(01)00755-1
    [56] ZHAO X, LIU H J, LI A Z, et al.Bromate removal by electrochemical reduction at boron-doped diamond electrode[J].Electrochimica Acta,2012,62:181-184 10.1016/j.electacta.2011.12.013
    [57] 李昂臻.电/光电催化降解水中消毒副产物及其前驱体的研究[D].北京:中国科学院研究生院,2012
    [58] 王颖.电化学-化学催化还原水中硝酸盐氮的研究[D].北京:中国科学院研究生院,2006
    [59] PEEL J W, REDDY K J, SULLIVAN B P, et al.Electrocatalytic reduction of nitrate in water[J].Water Research,2003,37(10):2512-2519 10.1016/S0043-1354(03)00008-3
    [60] WANG Y, QU J H, LIU H J.Preparation and electrochemical properties of the Pd-modified Cu electrode for nitrate reduction in water[J].Chinese Chemical Letters,2006,17(1):61-64
    [61] WANG Y, QU J H, WU R C, et al.The electrocatalytic reduction of nitrate in water on Pd/Sn-modified activated carbon fiber electrode[J].Water Research,2006,40(6):1224-1232 10.1016/j.watres.2006.01.017
    [62] ZHAO X, GUO L B, ZHANG B F, et al.Photoelectrocatalytic oxidation of Cu(II)-EDTA at the TiO2 electrode and simultaneous recovery of Cu(II) by electrodeposition[J].Environmental Science & Technology,2013,47(9):4480-4488 10.1021/es3046982
    [63] ZHAO X, ZHANG J J, QIAO M, et al.Enhanced photoelectrocatalytic decomposition of copper cyanide complexes and simultaneous recovery of copper with a Bi2MoO6 electrode under visible light by EDTA/K4P2O7[J].Environmental Science & Technology,2015,49(7):4567-4574 10.1021/es5062374
    [64] ZHAO X, ZHANG J J, QU J H.Photoelectrocatalytic oxidation of Cu-cyanides and Cu-EDTA at TiO2 nanotube electrode[J].Electrochimica Acta,2015,180:129-137 10.1016/j.electacta.2015.08.103
    [65] ZENG H B, TIAN S C, LIU H F, et al.Photo-assisted electrolytic decomplexation of Cu-EDTA and Cu recovery enhanced by H2O2 and electro-generated active chlorine[J].Chemical Engineering Journal,2016,301:371-379 10.1016/j.cej.2016.04.006
    [66] LI L H, HUANG Z P, FAN X X, et al.Preparation and characterization of a Pd modified Ti/SnO2-Sb anode and its electrochemical degradation of Ni-EDTA[J].Electrochimica Acta,2017,231:354-362 10.1016/j.electacta.2017.02.072
    [67] 杨桂蓉.可见光电极研制及光电催化去除络合态重金属研究[D].天津:河北工业大学,2014
    [68] MAO R, ZHAO X, LAN H C, et al.Efficient electrochemical reduction of bromate by a Pd/rGO/CFP electrode with low applied potentials[J].Applied Catalysis B: Environmental,2014,160-161(Supplement C):179-187 10.1016/j.apcatb.2014.04.040
    [69] MAO R, ZHAO X, LAN H C, et al.Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor[J].Water Research,2015,77(Supplement C):1-12 10.1016/j.watres.2015.03.002
    [70] MORALES-GUIO G C, STERN L A, HU X L.Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J].Chemical Society Reviews,2014,43(18):6555-6569 10.1039/C3CS60468C
    [71] MI Y, WEN L Y, WANG Z J, et al.Ultra-low mass loading of platinum nanoparticles on bacterial cellulose derived carbon nanofibers for efficient hydrogen evolution[J].Catalysis Today,2016,262:141-145 10.1016/j.cattod.2015.08.019
    [72] YIN H J, ZHAO S L, ZHAO K, et al.Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity[J].Nature Communications,2015,6:6430-6437 10.1038/ncomms7430
    [73] 章晨林,张新妙,郭智,等. 电渗析法处理含盐废水的进展[J]. 现代化工,2016,36(7):13-16
    [74] KORNGOLD E, ARONOV L, DALTROPHE N.Electrodialysis of brine solutions discharged from an RO plant[J].Desalination,2009,242(1/2/3):215-227 10.1016/j.desal.2008.04.008
    [75] 王先锋. 高浓度酸性染料废水除盐工艺可行性研究[D]. 西安:陕西科技大学,2012
    [76] ZUO K C, CHANG J L, LIU F B, et al.Enhanced organics removal and partial desalination of high strength industrial wastewater with a multi-stage microbial desalination cell[J].Desalination,2017,423:104-110 10.1016/j.desal.2017.09.018
    [77] LIU R D, WANG Y K, WU G, et al.Development of a selective electrodialysis for nutrient recovery and desalination during secondary effluent treatment[J].Chemical Engineering Journal,2017,322:224-233 10.1016/j.cej.2017.03.149
    [78] WANG D, GAO X L, ZHANG Y S, et al.Recovery of petroleum sulfonate from petrochemical dispersion by modified three-compartment electrodialysis[J].Separation and Purification Technology,2017,186:135-144 10.1016/j.seppur.2017.05.042
    [79] 孙长顺,徐军礼,张振文,等. 三室电渗析回收黄姜皂素水解废液中硫酸的研究[J]. 给水排水,2012,48(7):135-139 10.3969/j.issn.1002-8471.2012.07.032
    [80] LACEY R E.Energy by reverse electrodialysis[J].Ocean Engineering,1980,7(1):1-47 10.1016/0029-8018(80)90030-X
    [81] PATTLE E R.Production of electric power by mixing fresh and salt water in the hydroelectric pile[J].Nature,1954,174(4431):660-666 10.1038/174660a0
    [82] MEI Y, TANG C Y.Recent developments and future perspectives of reverse electrodialysis technology: A review[J].Desalination,2018,425:156-174 10.1016/j.desal.2017.10.021
    [83] POST J W, GOETING C H, VALK J, et al.Towards implementation of reverse electrodialysis for power generation from salinity gradients[J].Desalination and Water Treatment,2010,16(1/2/3):182-193 10.5004/dwt.2010.1093
    [84] PIOTR D, JOANNA D, KITTY N, et al.Ion conductive spacers for increased power generation in reverse electrodialysis[J].Journal of Membrane Science,2010,347(1/2):101-107 10.1016/j.memsci.2009.10.011
    [85] ENVER G, ZHANG Y L, MICHEL S, et al.Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis[J].Chemsuschem,2012,5(11):2262-2270 10.1002/cssc.201200298
    [86] MAHBOOBEH V, HAMED K, RYOSUKE T, et al.Biofouling phenomena on anion exchange membranes under the reverse electrodialysis process[J].Journal of Membrane Science,2017,530:232-239 10.1016/j.memsci.2017.02.036
    [87] D′ANGELO A, TEDESCO M, CIPOLLINA A, et al.Reverse electrodialysis performed at pilot plant scale: Evaluation of redox processes and simultaneous generation of electric energy and treatment of wastewater[J].Water Research,2017,125(1):123-131 10.1016/j.watres.2017.08.008
    [88] VEERMAN J, DE JONG R M, SAAKES M, et al.Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density[J].Journal of Membrane Science,2009,343(1/2):7-15 10.1016/j.memsci.2009.05.047
    [89] SCIALDONE O, D′ANGELO A, GALIA A.Energy generation and abatement of acid orange 7 in reverse electrodialysis cells using salinity gradients[J].Journal of Electroanalytical Chemistry,2015,738:61-68 10.1016/j.jelechem.2014.11.024
    [90] LI X H, JIN X D, ZHAO N N, et al.Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell[J].Bioresource Technology,2017,228:322-329 10.1016/j.biortech.2016.12.114
    [91] XU L N, ZHAO H Z, SHI S Y, et al.Electrolytic treatment of C.I.acid orange 7 in aqueous solution using a three-dimensional electrode reactor[J].Dyes and Pigments,2008,77(1):158-164 10.1016/j.dyepig.2007.04.004
    [92] GAO G D, ZHANG Q Y, HAO Z W, et al.Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton[J].Environmental Science & Technology,2015,49(4):2375-2383 10.1021/es505679e
    [93] CUSICK R D, KIM Y, LOGAN B E.Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells[J].Science,2012,335(6075):1474-1477 10.1126/science.1219330
    [94] LUO X, CAO X X, MO Y H, et al.Power generation by coupling reverse electrodialysis and ammonium bicarbonate: Implication for recovery of waste heat[J].Electrochemistry Communications,2012,19(1):25-28 10.1016/j.elecom.2012.03.004
    [95] MICHELE T, CLAUDIO S, DAVIDE V, et al.Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines[J].Journal of Membrane Science,2016,500:33-45 10.1016/j.memsci.2015.10.057
    [96] MICHELE T, ANDREA C, ALESSANDRO T, et al.Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines[J].Journal of Membrane Science,2017,522:226-236 10.1016/j.memsci.2016.09.015
    [97] ANDELMAN M.Ionic group derivitized nano porous carbon electrodes for capacitive deionization[J].Journal of Materials Science & Chemical Engineering,2014,2(3):25-36 10.4236/msce.2014.23002
    [98] PORADA S, ZHAO R, WAL V D A, et al.Review on the science and technology of water desalination by capacitive deionization[J].Progress in Materials Science,2013,58(8):1388-1442 10.1016/j.pmatsci.2013.03.005
    [99] GARCIA-QUISMONDO E, SANTOS C, SORIA J, et al.New operational modes to increase energy efficiency in capacitive deionization systems[J].Environmental Science & Technology,2016,50(11):6053-6060 10.1021/acs.est.5b05379
    [100] ZORNITTA R L, RUOTOLO L A M.Simultaneous analysis of electrosorption capacity and kinetics for CDI desalination using different electrode configurations[J].Chemical Engineering Journal,2018,332:33-41 10.1016/j.cej.2017.09.067
    [101] WANG G, QIAN B Q, DONG Q, et al.Highly mesoporous activated carbon electrode for capacitive deionization[J].Separation & Purification Technology,2013,103:216-221 10.1016/j.seppur.2012.10.041
    [102] CHUNGLIN Y, HSINGCHENG H, LI K C, et al.Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio[J].Desalination,2015,367:60-68 10.1016/j.desal.2015.03.035
    [103] HOU C H, HUANG C Y.A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization[J].Desalination,2013,314(8):124-129 10.1016/j.desal.2012.12.029
    [104] VILLAR I, ROLDAN S, RUIZ V, et al.Capacitive deionization of NaCl solutions with modified activated carbon electrodes [J].Energy & Fuels,2010,24(6):3329-3333 10.1021/ef901453q
    [105] WANG G, DONG Q, LING Z, et al.Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization[J].Journal of Materials Chemistry,2012,22(41):21819-21823 10.1039/c2jm34890j
    [106] WANG G,PAN C,WANG L P,et al.Activated carbon nanofiber webs made by electrospinning for capacitive deionization[J].Electrochimica Acta,2012,69(5):65-70 10.1016/j.electacta.2012.02.066
    [107] LIANG P, YUAN L L, YANG X F, et al.Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination[J].Water Research,2013,47(7):2523-2530 10.1016/j.watres.2013.02.037
    [108] FARMER J C, FIX D V, MACK G V, et al.The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water[C]//Office of Scientific & Technical Information Technical Reports.Electric Power Research Institute Low-Level Waste Conference,1995:595-599
    [109] SUSS M E, BAUMANN T F, BOURCIER W L, et al.Capacitive desalination with flow-through electrodes[J].Energy & Environmental Science,2012,5(11):9511-9519 10.1039/C2EE21498A
    [110] WANG L, WANG M, HUANG Z H, et al.Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes[J].Journal of Materials Chemistry,2011,21(45):18295-18299 10.1039/c1jm13105b
    [111] LI H B, PAN L K, LU T, et al.A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization[J].Journal of Electroanalytical Chemistry,2011,653(1/2):40-44 10.1016/j.jelechem.2011.01.012
    [112] AGHIGH A, ALIZADEH V, WONG H Y, et al.Recent advances in utilization of graphene for filtration and desalination of water: A review[J].Desalination,2015,365:389-397 10.1016/j.desal.2015.03.024
    [113] XU Y X, BAI H, LU G W, et al.Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J].Journal of the American Chemical Society,2008,130(18):5856-5857 10.1021/ja800745y
    [114] HOU C H, LIU N L, HSU H L, et al.Development of multi-walled carbon nanotube/poly(vinyl alcohol) composite as electrode for capacitive deionization[J].Separation & Purification Technology,2014,130:7-14 10.1016/j.seppur.2014.04.004
    [115] ZHANG D S, WEN X R, SHI L Y, et al.Enhanced capacitive deionization of graphene/mesoporous carbon composites[J].Nanoscale,2012,4(17):5440-5446 10.1039/c2nr31154b
    [116] ZORNITTA R L, GARCIA-MATEOS F J, LADO J J, et al.High-performance activated carbon from polyaniline for capacitive deionization[J].Carbon,2017,123:318-333 10.1016/j.carbon.2017.07.071
    [117] 毕慧芝, 田秉晖. 电吸附活性炭电极制备及电吸附特性[J]. 环境工程学报,2015,9(4):1606-1612
    [118] GEIM A K, NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191 10.1038/nmat1849
    [119] WANG H, YUAN X Z, WU Y, et al.Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation.[J].Advances in Colloid and Interface Science,2013,195-196(7):19-40 10.1016/j.cis.2013.03.009
    [120] LIANG L P, JIANG X, YANG W J, et al.Kinetics of selenite reduction by zero-valent iron[J].Desalination and Water Treatment,2015,53(9):2540-2548 10.1080/19443994.2013.862868
    [121] XU X, SUN Z, CHUA D H C, et al.Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance[J].Scientific Reports,2015,5:11225 10.1038/srep11225
    [122] SHI W H, LI H B, CAO X H, et al.Ultrahigh performance of novel capacitive deionization electrodes based on a three-dimensional graphene architecture with nanopores[J].Scientific Reports,2016,6:18966 10.1038/srep18966
    [123] 刘方园, 胡承志, 李永峰,等.MnO2/CFP复合电极的制备及电吸附Pb2+特性的研究[J]. 环境科学,2015,36(2):552-558 10.13227/j.hjkX.2015.02.024
    [124] HU C Z, DONG J J, WANG T, et al.Nitrate electro-sorption/reduction in capacitive deionization using a novel Pd/NiAl-layered metal oxide film electrode[J].Chemical Engineering Journal,2018,335:475-482 10.1016/j.cej.2017.10.167
    [125] SUSS M E, PORADA S, SUN X, et al.Water desalination via capacitive deionization: What is it and what can we expect from it?[J].Energy & Environmental Science,2015,8(8):2296-2319 10.1039/C5EE00519A
    [126] BOUHADANA Y, AVRAHAM E, NOKED M, et al.Capacitive deionization of NaCl solutions at non-steady-state conditions: Inversion functionality of the carbon electrodes[J].Journal of Physical Chemistry C,2011,115(33):16567-16573 10.1021/jp2047486
    [127] JI Q H, YU D W, ZHANG G, et al.Microfluidic flow through polyaniline supported by lamellar-structured graphene for mass-transfer-enhanced electrocatalytic reduction of hexavalent chromium[J].Environmental Science & Technology,2015,49(22):13534-13541 10.1021/acs.est.5b03314
    [128] GILBERT D M SALE TC.Sequential electrolytic oxidation and reduction of aqueous phase energetic compounds[J].Environmental Science & Technology,2005,39(23):9270-9277 10.1021/es051452k
    [129] JI Q H, AN X Q, LIU H J, et al.Electric double-layer effects induce separation of aqueous metal ions[J].ACS Nano,2015,9(11):10922-10930 10.1021/acsnano.5b04027
    [130] LI H B, GAO Y, PAN L K, et al.Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes[J].Water Research,2008,42(20):4923-4928 10.1016/j.watres.2008.09.026
    [131] LI H B, ZOU L.Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination[J].Desalination,2011, 275(1):62-66 10.1016/j.desal.2011.02.027
    [132] YAN C J, ZOU L, SHORT R.Single-walled carbon nanotubes and polyaniline composites for capacitive deionization[J].Desalination,2012,290(1):125-129 10.1016/j.desal.2012.01.017
    [133] JI Q H, AN X Q, LIU H J, et al.Electric double-layer effects induce separation of aqueous metal ions[J].ACS Nano,2015,9(11):10922-10930 10.1021/acsnano.5b04027
    [134] XIE M, SHON H K, GRAY S R, et al.Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction[J].Water Research,2016,89: 210-221 10.1016/j.watres.2015.11.045
    [135] 黄黛诗. 膜电容脱盐(MCDI)小试装置除盐特性研究[D]. 北京:清华大学,2015
    [136] 王村. 电化学氧化与纳滤法耦合处理染料废水[D]. 天津:天津大学,2009
    [137] 何伟华,刘佳,王海曼,等.微生物电化学污水处理技术的优势与挑战[J].电化学,2017,23(3):283-296 10.13208/j.electrochem.161054
  • 加载中
计量
  • 文章访问数:  16910
  • HTML全文浏览数:  16166
  • PDF下载数:  2427
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-03-22
胡承志, 刘会娟, 曲久辉. 电化学水处理技术研究进展[J]. 环境工程学报, 2018, 12(3): 677-696. doi: 10.12030/j.cjee.201801179
引用本文: 胡承志, 刘会娟, 曲久辉. 电化学水处理技术研究进展[J]. 环境工程学报, 2018, 12(3): 677-696. doi: 10.12030/j.cjee.201801179
HU Chengzhi, LIU Huijuan, QU Jiuhui. Research progress of electrochemical technologies for water treatment[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 677-696. doi: 10.12030/j.cjee.201801179
Citation: HU Chengzhi, LIU Huijuan, QU Jiuhui. Research progress of electrochemical technologies for water treatment[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 677-696. doi: 10.12030/j.cjee.201801179

电化学水处理技术研究进展

  • 1. 中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085
  • 2. 中国科学院大学,北京 100049
  • 3. 中国科学院生态环境研究中心,高浓度难降解有机废水处理技术国家工程实验室, 北京 100085
基金项目:

国家自然科学基金资助项目(51438011,51738013)

摘要: 电化学方法可以通过电子的定向转移与精确调控,强化环境界面过程的速率和效率,其在水处理与资源化中体现出非凡的特点和优势,成为破解水危机和水污染的重要技术手段。近10年来,电化学水处理与资源化技术发展取得了长足的进步,正在向电极高效、工艺耦合、低碳绿色转变,未来将进一步聚焦功能电极材料设计、高效反应器与组合工艺开发、资源能源的定向转移与回收等重要方向。为深入研究电化学水处理与资源化技术机理,进一步探讨电化学方法在实际工程中的广泛应用,在重点关注电化学应用基础研究和前沿技术的基础上,分别对电絮凝、电氧化、电还原、电渗析/反向电渗析和电吸附技术的研究进展进行了回顾,并对电化学水处理与资源化技术发展进行了总结和展望。

English Abstract

参考文献 (137)

返回顶部

目录

/

返回文章
返回