石墨烯复合改性海绵的制备及其吸油性能

杜国勇, 朱成旺, 曾文强, 任燕玲, 蒋昕, 郑惠芸, 蒋小萍. 石墨烯复合改性海绵的制备及其吸油性能[J]. 环境工程学报, 2018, 12(3): 741-750. doi: 10.12030/j.cjee.201709029
引用本文: 杜国勇, 朱成旺, 曾文强, 任燕玲, 蒋昕, 郑惠芸, 蒋小萍. 石墨烯复合改性海绵的制备及其吸油性能[J]. 环境工程学报, 2018, 12(3): 741-750. doi: 10.12030/j.cjee.201709029
DU Guoyong, ZHU Chengwang, ZENG Wenqiang, REN Yanling, JIANG Xin, ZHENG Huiyun, JIANG Xiaoping. Preparation and oil absorption properties of graphene composite modified sponge[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 741-750. doi: 10.12030/j.cjee.201709029
Citation: DU Guoyong, ZHU Chengwang, ZENG Wenqiang, REN Yanling, JIANG Xin, ZHENG Huiyun, JIANG Xiaoping. Preparation and oil absorption properties of graphene composite modified sponge[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 741-750. doi: 10.12030/j.cjee.201709029

石墨烯复合改性海绵的制备及其吸油性能

  • 基金项目:

    国家科技重大专项课题“废弃物处理与利用技术”(2016ZX05040-003)

Preparation and oil absorption properties of graphene composite modified sponge

  • Fund Project:
  • 摘要: 将三聚氰胺海绵(MF)浸入氧化石墨烯(GO)悬浮液,经微波溶剂热还原反应后,用聚二甲基硅氧烷(PDMS)进一步修饰,得到超疏水亲油的石墨烯复合改性吸油海绵(rGO-PDMS-MF)。优化了GO和PDMS改性试剂的浓度,通过扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FTIR)及接触角(CA)测定仪对海绵结构和性质进行了表征,测试了海绵的饱和吸油性能、重复使用性能及油水分离性能。结果表明:GO悬浮液和PDMS溶液最适浓度分别为2.0 g·L-1和1.0%(质量分数);所得海绵的接触角达151.5°,饱和吸油能力达45~110 g·g-1,可通过吸附-挤压方式重复使用10次以上;rGO-PDMS-MF海绵对油水体系具有良好的选择性,与泵装置结合后可以连续有效地将油从水面分离,再生使用后仍保持较高的浮油回收速率和较强的疏水性能。
  • 加载中
  • [1] CHROPE M.Oil spill: Deep wounds[J].Nature News,2011,472(7342):152-154 10.1038/472152a
    [2] SCHROPE M.Deepwater horizon: A scientist at the centre of the spill[J].Nature News,2010,466(7307):680-684 10.1038/466680a
    [3] GUPTA S, TAI N H.Carbon materials as oil sorbents: A review on the synthesis and performance[J].Journal of Materials Chemistry A,2016,4(5):1550-1565 10.1039/C5TA08321D
    [4] 王文华, 邱金泉, 寇希元, 等. 吸油材料在海洋溢油处理中的应用研究进展[J]. 化工新型材料,2013,41(7):151-154 10.3969/j.issn.1006-3536.2013.07.051
    [5] KELLER A A, BROJE V.Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface[J].Environmental Science & Technology,2006,40(24):7914-7918 10.1021/es061842m
    [6] CHAPMAN H, PURNELL K, LAW R J, et al.The use of chemical dispersants to combat oil spills at sea: A review of practice and research needs in Europe[J].Marine Pollution Bulletin,2007,54(7):827-838 10.1016/j.marpolbul.2007.03.012
    [7] GE J, YE Y D, YAO H B, et al.Pumping through porous hydrophobic/oleophilic materials: An alternative technology for oil spill remediation[J].Angewandte Chemie,2014,126(14):3686-3690 10.1002/anie.201310151
    [8] GUO J, WANG J, ZHANG S, et al.One-step modification of PU sponges for selective absorption of oil–water mixtures[J].New Journal of Chemistry,2017,41(1):90-96 10.1039/C6NJ03239G
    [9] MARGESIN R, SCHINNER F.Biodegradation and bioremediation of hydrocarbons in extreme environments[J].Applied Microbiology and Biotechnology,2001,56(5):650-663 10.1007/s002530100701
    [10] 刘生鹏, 高秋, 胡仙林, 等. 吸油材料的研究进展[J]. 武汉工程大学学报,2013,35(12):27-34 10.3969/j.issn.1674-2869.2013.12.006
    [11] LI X Y, XUE Y Y, ZOU M C, et al.Direct oil recovery from saturated carbon nanotube sponges[J].ACS Applied Materials & Interfaces,2016,8(19):12337-12343 10.1021/acsami.6b01623
    [12] SHA J, GAO C, LEE S K, et al.Preparation of three-dimensional graphene foams using powder metallurgy templates[J].ACS Nano,2015,10(1):1411-1416 10.1021/acsnano.5b06857
    [13] ZHAO J P, REN W C, CHENG H M.Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations[J].Journal of Materials Chemistry,2012,22(38):20197-20202 10.1039/C2JM34128J
    [14] WAN S, BI H C, SUN L T.Graphene and carbon-based nanomaterials as highly efficient adsorbents for oils and organic solvents[J].Nanotechnology Reviews,2016,5(1):3-22 10.1515/ntrev-2015-0062
    [15] SOROUR M H, HANI H A, AL-BAZEDI G A, et al.Hydrophobic silica aerogels for oil spills clean-up, synthesis, characterization and preliminary performance evaluation[J].Journal of Porous Materials,2016,23(5):1401-1409 10.1007/s10934-016-0200-5
    [16] GE J, ZHAO H Y, ZHU H W, et al.Advanced sorbents for oil-spill cleanup: Recent advances and future perspectives[J].Advanced Materials,2016,28(47):10459-10490 10.1002/adma.201601812
    [17] DAI Z H, WENG C X, LIU L Q, et al.Multifunctional polymer-based graphene foams with buckled structure and negative Poisson’s ratio[J].Scientific Reports,2016,6:32989 10.1038/srep32989
    [18] HUANG S, LI X, JIAO Y, et al.Fabrication of a superhydrophobic, fire-resistant, and mechanical robust sponge upon polyphenol chemistry for efficiently absorbing oils/organic solvents[J].Industrial & Engineering Chemistry Research,2015,54(6):1842-1848 10.1021/ie504812p
    [19] DU X, LIU H Y, MAI Y W.Ultrafast synthesis of multifunctional N-doped graphene foam in an ethanol flame[J].ACS Nano,2015,10(1):453-462 10.1021/acsnano.5b05373
    [20] WANG B, LIANG W, GUO Z, et al.Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature[J].Chemical Society Reviews,2015,44(1):336-361 10.1039/C4CS00220B
    [21] GUO G L, LIU L B, DANG Z, et al.Recent progress of polyurethane-based materials for oil/water separation[J].Nano,2017,12(4):1730001 10.1142/S1793292017300018
    [22] 李朝宇,张潇,吕佳佳,等. 石墨烯/SiO2气凝胶对苯、甲苯水溶液的吸附[J]. 中国环境科学,2017,37(3):972-979 10.3969/j.issn.1000-6923.2017.03.021
    [23] ZHU H G, CHEN D Y, AN W, et al.A robust and cost-effective superhydrophobic graphene foam for efficient oil and organic solvent recovery[J].Small,2015,11(39):5222-5229 10.1002/smll.201501004
    [24] ZHAO J, GUO Q J, WANG X, et al.Recycle and reusable melamine sponge coated by graphene for highly efficient oil-absorption[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2016,488:93-99 10.1016/j.colsurfa.2015.09.048
    [25] NGUYEN D D, TAI N H, LEE S B, et al.Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method[J].Energy & Environmental Science,2012,5(7):7908-7912 10.1039/C2EE21848H
    [26] 邓翠萍, 谢裕畴, 汪文思, 等. 磁性还原氧化石墨烯负载 Fe0 对罗丹明B的类芬顿降解[J]. 环境工程学报,2017,11(6):3499-3506 10.12030/j.cjee.201603138
    [27] TJANDRA R, LUI G, VEILLEUX A, et al.Introduction of an enhanced binding of reduced graphene oxide to polyurethane sponge for oil absorption[J].Industrial & Engineering Chemistry Research,2015,54(14):3657-3663 10.1021/acs.iecr.5b00748
    [28] SONG S, YANG H, SU C P, et al.Ultrasonic-microwave assisted synthesis of stable reduced graphene oxide modified melamine foam with superhydrophobicity and high oil adsorption capacities[J].Chemical Engineering Journal,2016,306:504-511 10.1016/j.cej.2016.07.086
    [29] BAGHBANZADEH M, CARBONE L, COZZOLI P D, et al.Microwave-assisted synthesis of colloidal inorganic nanocrystals[J].Angewandte Chemie International Edition,2011,50(48):11312-11359 10.1002/anie.201101274
    [30] HUMMERS J R W S, OFFEMAN R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339-1339 10.1021/ja01539a017
    [31] PHAM V H, DICKERSON J H.Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials[J].ACS Applied Materials & Interfaces,2014,6(16):14181-14188 10.1021/am503503m
    [32] MARK J E.Some interesting things about polysiloxanes[J].Accounts of Chemical Research,2004,37(12):946-953 10.1021/ar030279z
    [33] TRAN D N H, KABIRI S, SIM T R, et al.Selective adsorption of oil–water mixtures using polydimethylsiloxane (PDMS)–graphene sponges[J].Environmental Science: Water Research & Technology,2015,1(3):298-305 10.1039/C5EW00035A
    [34] GE J, SHI L A, WANG Y C, et al.Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill[J].Nature Nanotechnology,2017,12(5):434-440 10.1038/nnano.2017.33
    [35] JIANG Z R, GE J, ZHOU Y X, et al.Coating sponge with a hydrophobic porous coordination polymer containing a low-energy CF3-decorated surface for continuous pumping recovery of an oil spill from water[J].NPG Asia Materials,2016,8(3):e253 10.1038/am.2016.22
  • 加载中
计量
  • 文章访问数:  4268
  • HTML全文浏览数:  3844
  • PDF下载数:  662
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-03-22

石墨烯复合改性海绵的制备及其吸油性能

  • 1. 西南石油大学化学化工学院,成都 610500
  • 2. 川庆钻探工程有限公司安全环保质量监督检测研究院,广汉 618300
基金项目:

国家科技重大专项课题“废弃物处理与利用技术”(2016ZX05040-003)

摘要: 将三聚氰胺海绵(MF)浸入氧化石墨烯(GO)悬浮液,经微波溶剂热还原反应后,用聚二甲基硅氧烷(PDMS)进一步修饰,得到超疏水亲油的石墨烯复合改性吸油海绵(rGO-PDMS-MF)。优化了GO和PDMS改性试剂的浓度,通过扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FTIR)及接触角(CA)测定仪对海绵结构和性质进行了表征,测试了海绵的饱和吸油性能、重复使用性能及油水分离性能。结果表明:GO悬浮液和PDMS溶液最适浓度分别为2.0 g·L-1和1.0%(质量分数);所得海绵的接触角达151.5°,饱和吸油能力达45~110 g·g-1,可通过吸附-挤压方式重复使用10次以上;rGO-PDMS-MF海绵对油水体系具有良好的选择性,与泵装置结合后可以连续有效地将油从水面分离,再生使用后仍保持较高的浮油回收速率和较强的疏水性能。

English Abstract

参考文献 (35)

目录

/

返回文章
返回