高压静电催化耦合净化空气中的臭氧控制及其室内浓度预测模型

李帮俊, 范泽云, 张溢, 施建伟, 上官文峰. 高压静电催化耦合净化空气中的臭氧控制及其室内浓度预测模型[J]. 环境工程学报, 2017, 11(7): 4117-4124. doi: 10.12030/j.cjee.201605154
引用本文: 李帮俊, 范泽云, 张溢, 施建伟, 上官文峰. 高压静电催化耦合净化空气中的臭氧控制及其室内浓度预测模型[J]. 环境工程学报, 2017, 11(7): 4117-4124. doi: 10.12030/j.cjee.201605154
LI Bangjun, FAN Zeyun, ZHANG Yi, SHI Jianwei, SHANGGUAN Wenfeng. Ozone control and concentration prediction model in high voltage electrostatic coupling catalysis for indoor air purification[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4117-4124. doi: 10.12030/j.cjee.201605154
Citation: LI Bangjun, FAN Zeyun, ZHANG Yi, SHI Jianwei, SHANGGUAN Wenfeng. Ozone control and concentration prediction model in high voltage electrostatic coupling catalysis for indoor air purification[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4117-4124. doi: 10.12030/j.cjee.201605154

高压静电催化耦合净化空气中的臭氧控制及其室内浓度预测模型

  • 基金项目:

    国家自然科学基金资助项目(21577088)

    国家重点研发计划(2017YFC0211804)

  • 中图分类号: X511

Ozone control and concentration prediction model in high voltage electrostatic coupling catalysis for indoor air purification

  • Fund Project:
  • 摘要: 静电除尘技术由于其风阻小、PM2.5净化效率高等特点,在空气污染治理中的应用备受关注。针对民用静电式空气净化装置的高压静电模块产生臭氧的问题,对比了在不同尺寸密封舱中高压静电模块与催化模块耦合前后臭氧浓度水平。依据单空间充分混合假设下的臭氧质量守恒方程和室内臭氧浓度衰减特性,针对有静电式空气净化装置的室内环境建立了可工程实用的臭氧浓度预测模型,并结合密封舱实验对预测模型进行了验证。研究表明高压静电耦合催化模块后能使舱内臭氧浓度维持在安全限值以内。该预测模型能有效预测室内臭氧浓度,对静电式空气净化器设计有指导意义。
  • 加载中
  • [1] 马惠颖, 邵晓亮, 梁超, 等. 雾霾天气下住宅开窗通风与空气净化联合策略可行性研究[J]. 暖通空调, 2016, 46(2): 18-23
    [2] PODLIN'SKI J, NIEWULIS A, MIZERACZYK J. Electrohydrodynamic flow and particle collection efficiency of a spike-plate type electrostatic precipitator[J]. Journal of Electrostatics, 2009, 67(2): 99-104
    [3] SUNG B J, ALY A, LEE S H, et al. Fine-particle collection using an electrostatic precipitator equipped with an electrostatic flocking filter as the collecting electrode[J]. Plasma Processes and Polymers, 2006, 3(9): 661-667
    [4] 彭继. 静电除尘技术在中央空调系统净化改造中的应用[J]. 建筑节能, 2013, 41(4): 1-5
    [5] 王志勇, 邓高峰, 徐昭炜, 等. 静电式空气净化器对PM2.5净化效果研究[J]. 环境与健康杂志, 2013, 30(7): 643-644
    [6] NIU J L, TUNG T C W, BURNETT J. Quantification of dust removal and ozone emission of ionizer air-cleaners by chamber testing[J]. Journal of Electrostatics, 2001, 51: 20-24
    [7] OYAMA S T, ZHANG W, HEISIG C. Decomposition of ozone using carbon-supported metal oxide catalysts[J]. Applied Catalysis B Environmental, 1997, 14(1):117-129
    [8] LIU R Q, ZHAO M, WANG R F. supported metal oxide catalysts for ozone decomposition[J]. Jiangsu Environmental Science & Technology, 2008
    [9] 陈烨璞, 蒋爱丽, 谭桂霞, 等. 臭氧催化分解的研究[J]. 工业催化, 2006, 14(5): 52-55
    [10] 孙鹏. MnO<i>x/γ-Al2O3催化剂上臭氧氧化脱除空气中甲醛的研究[D]. 大连:大连理工大学, 2015
    [11] 曾小岚, 高倩, 曹彦荣,等. Mn的氧化价态对MnO<i>x/γ-Al2O3催化剂催化臭氧氧化气相低浓度甲苯的影响[J]. 环境工程学报,2013, 7(12):4915-4920
    [12] 龙丽萍. 常温下 MnO/AlO催化剂催化臭氧氧化甲苯反应[J]. 催化学报, 2011, 32(6):904-916
    [13] JIANG Z, CHEN M, SHI J, et al. Catalysis removal of indoor volatile organic compounds in room temperature: From photocatalysis to active species assistance catalysis[J]. Catalysis Surveys from Asia, 2014, 19(1): 1-16
    [14] LI Y, FAN Z, SHI J, et al. Modified manganese oxide octahedral molecular sieves M'-OMS-2 (M'=Co,Ce,Cu) as catalysts in post plasma-catalysis for acetaldehyde degradation[J]. Catalysis Today, 2015, 256: 178-185
    [15] WANG M, ZHANG P, LI J, et al. The effects of Mn loading on the structure and ozone decomposition activity of MnO<i>x supported on activated carbon[J]. Chinese Journal of Catalysis, 2014, 35(3): 335-341
    [16] SHAIR F H, HEITNER K L. Theoretical model for relating indoor pollutant concentrations to those outside[J]. Environmental Science & Technology,1974, 8(5): 444-451
    [17] NAZAROFF W, GADGIL A, WESCHLER C. Critique of the use of deposition velocity in modeling indoor air quality[J]. Modeling of Indoor Air Quality and Exposure,1992,1205:81-103
    [18] DRUZIK J R, ADAMS M S, TILLER C, et al. The measurement and model predictions of indoor ozone concentrations in museums[J]. Atmospheric Environment Part A General Topics, 1990, 24(7): 1813-1823
    [19] REISS R, RYAN P B, KOUTRAKIS P. Modeling ozone deposition onto indoor residential surfaces[J]. Environmental Science & Technology, 1994, 28(3): 504-513
    [20] POPPENDIECK D, HUBBARD H, WARD M, et al. Ozone reactions with indoor materials during building disinfection[J]. Atmospheric Environment, 2007, 41(15): 3166-3176
    [21] LIN C C, HSU S C. Deposition velocities and impact of physical properties on ozone removal for building materials[J]. Atmospheric Environment,2015, 101: 194-199
    [22] NAZAROFF W W, CASS G R. Mathematical modeling of chemically reactive pollutants in indoor air[J]. Environmental Science & Technology, 1986, 20(9): 924-934
    [23] SABERSKY R H, SINEMA D A, SHAIR F H. Concentrations, decay rates, and removal of ozone and their relation to establishing clean indoor air[J]. Environmental Science & Technology, 1973, 7(4): 347-353
    [24] CARSLAW N. A new detailed chemical model for indoor air pollution[J]. Atmospheric Environment, 2007, 41(6): 1164-1179
    [25] MUELLER F X, LOEB L, MAPES W H. Decomposition rates of ozone in living areas[J]. Environmental Science & Technology, 1973, 7(4): 342-346
    [26] MORISKE HJ, EBERT G, KONIECZNY L, et al. Concentrations and decay rates of ozone in indoor air in dependence on building and surface materials[J]. Toxicology Letter, 1998, 96-97: 319-323. DOI:10.1016/s0378-4274(98)00088-5
    [27] 中山医科大学公共卫生学院. GB/T 18202-2000. 室内空气中臭氧卫生标准[S]. 北京:中国标准出版社, 2000
    [28] 卫生部,国家环境保护总局. GB/T 18883-2002. 室内空气质量标准[S]. 北京:中国标准出版社, 2005
    [29] 周吉文, 李一倬, 范泽云, 等. 负载型钴锰复合氧化物臭氧辅助催化降解低浓度甲醛的性能研究[J]. 分子催化, 2014, 28(1): 60-66
  • 加载中
计量
  • 文章访问数:  2368
  • HTML全文浏览数:  2059
  • PDF下载数:  748
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-07-06
  • 刊出日期:  2017-07-06
李帮俊, 范泽云, 张溢, 施建伟, 上官文峰. 高压静电催化耦合净化空气中的臭氧控制及其室内浓度预测模型[J]. 环境工程学报, 2017, 11(7): 4117-4124. doi: 10.12030/j.cjee.201605154
引用本文: 李帮俊, 范泽云, 张溢, 施建伟, 上官文峰. 高压静电催化耦合净化空气中的臭氧控制及其室内浓度预测模型[J]. 环境工程学报, 2017, 11(7): 4117-4124. doi: 10.12030/j.cjee.201605154
LI Bangjun, FAN Zeyun, ZHANG Yi, SHI Jianwei, SHANGGUAN Wenfeng. Ozone control and concentration prediction model in high voltage electrostatic coupling catalysis for indoor air purification[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4117-4124. doi: 10.12030/j.cjee.201605154
Citation: LI Bangjun, FAN Zeyun, ZHANG Yi, SHI Jianwei, SHANGGUAN Wenfeng. Ozone control and concentration prediction model in high voltage electrostatic coupling catalysis for indoor air purification[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4117-4124. doi: 10.12030/j.cjee.201605154

高压静电催化耦合净化空气中的臭氧控制及其室内浓度预测模型

  • 1. 上海交通大学机械与动力工程学院, 上海 200240
基金项目:

国家自然科学基金资助项目(21577088)

国家重点研发计划(2017YFC0211804)

摘要: 静电除尘技术由于其风阻小、PM2.5净化效率高等特点,在空气污染治理中的应用备受关注。针对民用静电式空气净化装置的高压静电模块产生臭氧的问题,对比了在不同尺寸密封舱中高压静电模块与催化模块耦合前后臭氧浓度水平。依据单空间充分混合假设下的臭氧质量守恒方程和室内臭氧浓度衰减特性,针对有静电式空气净化装置的室内环境建立了可工程实用的臭氧浓度预测模型,并结合密封舱实验对预测模型进行了验证。研究表明高压静电耦合催化模块后能使舱内臭氧浓度维持在安全限值以内。该预测模型能有效预测室内臭氧浓度,对静电式空气净化器设计有指导意义。

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回