[1] 马惠颖, 邵晓亮, 梁超, 等. 雾霾天气下住宅开窗通风与空气净化联合策略可行性研究[J]. 暖通空调, 2016, 46(2): 18-23
[2] PODLIN'SKI J, NIEWULIS A, MIZERACZYK J. Electrohydrodynamic flow and particle collection efficiency of a spike-plate type electrostatic precipitator[J]. Journal of Electrostatics, 2009, 67(2): 99-104
[3] SUNG B J, ALY A, LEE S H, et al. Fine-particle collection using an electrostatic precipitator equipped with an electrostatic flocking filter as the collecting electrode[J]. Plasma Processes and Polymers, 2006, 3(9): 661-667
[4] 彭继. 静电除尘技术在中央空调系统净化改造中的应用[J]. 建筑节能, 2013, 41(4): 1-5
[5] 王志勇, 邓高峰, 徐昭炜, 等. 静电式空气净化器对PM2.5净化效果研究[J]. 环境与健康杂志, 2013, 30(7): 643-644
[6] NIU J L, TUNG T C W, BURNETT J. Quantification of dust removal and ozone emission of ionizer air-cleaners by chamber testing[J]. Journal of Electrostatics, 2001, 51: 20-24
[7] OYAMA S T, ZHANG W, HEISIG C. Decomposition of ozone using carbon-supported metal oxide catalysts[J]. Applied Catalysis B Environmental, 1997, 14(1):117-129
[8] LIU R Q, ZHAO M, WANG R F. supported metal oxide catalysts for ozone decomposition[J]. Jiangsu Environmental Science & Technology, 2008
[9] 陈烨璞, 蒋爱丽, 谭桂霞, 等. 臭氧催化分解的研究[J]. 工业催化, 2006, 14(5): 52-55
[10] 孙鹏. MnO<i>x/γ-Al2O3催化剂上臭氧氧化脱除空气中甲醛的研究[D]. 大连:大连理工大学, 2015
[11] 曾小岚, 高倩, 曹彦荣,等. Mn的氧化价态对MnO<i>x/γ-Al2O3催化剂催化臭氧氧化气相低浓度甲苯的影响[J]. 环境工程学报,2013, 7(12):4915-4920
[12] 龙丽萍. 常温下 MnO/AlO催化剂催化臭氧氧化甲苯反应[J]. 催化学报, 2011, 32(6):904-916
[13] JIANG Z, CHEN M, SHI J, et al. Catalysis removal of indoor volatile organic compounds in room temperature: From photocatalysis to active species assistance catalysis[J]. Catalysis Surveys from Asia, 2014, 19(1): 1-16
[14] LI Y, FAN Z, SHI J, et al. Modified manganese oxide octahedral molecular sieves M'-OMS-2 (M'=Co,Ce,Cu) as catalysts in post plasma-catalysis for acetaldehyde degradation[J]. Catalysis Today, 2015, 256: 178-185
[15] WANG M, ZHANG P, LI J, et al. The effects of Mn loading on the structure and ozone decomposition activity of MnO<i>x supported on activated carbon[J]. Chinese Journal of Catalysis, 2014, 35(3): 335-341
[16] SHAIR F H, HEITNER K L. Theoretical model for relating indoor pollutant concentrations to those outside[J]. Environmental Science & Technology,1974, 8(5): 444-451
[17] NAZAROFF W, GADGIL A, WESCHLER C. Critique of the use of deposition velocity in modeling indoor air quality[J]. Modeling of Indoor Air Quality and Exposure,1992,1205:81-103
[18] DRUZIK J R, ADAMS M S, TILLER C, et al. The measurement and model predictions of indoor ozone concentrations in museums[J]. Atmospheric Environment Part A General Topics, 1990, 24(7): 1813-1823
[19] REISS R, RYAN P B, KOUTRAKIS P. Modeling ozone deposition onto indoor residential surfaces[J]. Environmental Science & Technology, 1994, 28(3): 504-513
[20] POPPENDIECK D, HUBBARD H, WARD M, et al. Ozone reactions with indoor materials during building disinfection[J]. Atmospheric Environment, 2007, 41(15): 3166-3176
[21] LIN C C, HSU S C. Deposition velocities and impact of physical properties on ozone removal for building materials[J]. Atmospheric Environment,2015, 101: 194-199
[22] NAZAROFF W W, CASS G R. Mathematical modeling of chemically reactive pollutants in indoor air[J]. Environmental Science & Technology, 1986, 20(9): 924-934
[23] SABERSKY R H, SINEMA D A, SHAIR F H. Concentrations, decay rates, and removal of ozone and their relation to establishing clean indoor air[J]. Environmental Science & Technology, 1973, 7(4): 347-353
[24] CARSLAW N. A new detailed chemical model for indoor air pollution[J]. Atmospheric Environment, 2007, 41(6): 1164-1179
[25] MUELLER F X, LOEB L, MAPES W H. Decomposition rates of ozone in living areas[J]. Environmental Science & Technology, 1973, 7(4): 342-346
[26] MORISKE HJ, EBERT G, KONIECZNY L, et al. Concentrations and decay rates of ozone in indoor air in dependence on building and surface materials[J]. Toxicology Letter, 1998, 96-97: 319-323. DOI:10.1016/s0378-4274(98)00088-5
[27] 中山医科大学公共卫生学院. GB/T 18202-2000. 室内空气中臭氧卫生标准[S]. 北京:中国标准出版社, 2000
[28] 卫生部,国家环境保护总局. GB/T 18883-2002. 室内空气质量标准[S]. 北京:中国标准出版社, 2005
[29] 周吉文, 李一倬, 范泽云, 等. 负载型钴锰复合氧化物臭氧辅助催化降解低浓度甲醛的性能研究[J]. 分子催化, 2014, 28(1): 60-66