纳米零价铁改性氨基生物炭的制备及对Cd (Ⅱ)的吸附和解吸特性

马天行, 杨琛, 江鲜英, 党志, 李筱琴. 纳米零价铁改性氨基生物炭的制备及对Cd (Ⅱ)的吸附和解吸特性[J]. 环境工程学报, 2016, 10(10): 5433-5439. doi: 10.12030/j.cjee.201603178
引用本文: 马天行, 杨琛, 江鲜英, 党志, 李筱琴. 纳米零价铁改性氨基生物炭的制备及对Cd (Ⅱ)的吸附和解吸特性[J]. 环境工程学报, 2016, 10(10): 5433-5439. doi: 10.12030/j.cjee.201603178
MA Tianxing, YANG Chen, JIANG Xianying, DANG Zhi, LI Xiaoqin. Adsorption and desorption of Cd(Ⅱ) on amino biochar modified by nano zero valent iron[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5433-5439. doi: 10.12030/j.cjee.201603178
Citation: MA Tianxing, YANG Chen, JIANG Xianying, DANG Zhi, LI Xiaoqin. Adsorption and desorption of Cd(Ⅱ) on amino biochar modified by nano zero valent iron[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5433-5439. doi: 10.12030/j.cjee.201603178

纳米零价铁改性氨基生物炭的制备及对Cd (Ⅱ)的吸附和解吸特性

  • 基金项目:

    国家高技术研究发展计划(863)项目(2013AA06A209)

  • 中图分类号: X703

Adsorption and desorption of Cd(Ⅱ) on amino biochar modified by nano zero valent iron

  • Fund Project:
  • 摘要: 通过化学负载方法成功制得纳米零价铁改性氨基生物炭复合材料(ABC/NZVI),对其进行表征和研究了其对重金属Cd(Ⅱ)的吸附和解吸特性。结果表明,改性后,ABC/NZVI具有氨基官能团并且表面负载了纳米零价铁,比表面积为244 m2·g-1,在水溶液中稳定悬浮的平均粒径是845 nm。ABC/NZVI对Cd(Ⅱ)的吸附大约在457 min内即可达到吸附平衡,吸附动力学可用伪二级动力学模型较好地拟合(R2≥0.990);对Cd(Ⅱ)表现出优良的吸附性能,饱和吸附容量为12.4 mg·g-1,吸附/解吸等温线均呈现出明显的非线性,可用Langmuir模型较好地拟合(R2≥0.960),而且出现明显的解吸滞后现象,滞后系数(HI)为0.536。因此,ABC/NZVI对Cd(Ⅱ)的吸附可能为单分子层的化学吸附,主要的吸附机理可能涉及配合和沉淀两种作用。
  • [1] WANG Ningxin,ZHANG Xueying,WU Jun,et al.Effects of microcystin-LR on the metal bioaccumulation and toxicity in Chlamydomonas reinhardtii.Water Research,2012,46(2):369-377
    [2] 王振玉,刘家弟,李宗站,等.离子交换树脂去除金矿选矿循环用水中金属杂质离子的研究.黄金,2010,31(2):48-51WANG Zhenyu,LIU Jiadi,LI Zongzhan,et al.Research on the removal of metal impurity ions from the recycling water of gold concentrator with ion-exchange resins.Gold,2010,30(2):48-51(in Chinese)
    [3] 郭燕妮,方增坤,胡杰华,等.化学沉淀法处理含重金属废水的研究进展.工业水处理,2011,31(12):9-13GUO Yanni,FANG Zengkun,HU Jiehua,et al.Research development of treating wastewater containing heavy metals by chemical precipitation process.Industrial Water Treatment,2011,31(12):9-13(in Chinese)
    [4] 王海东.电化学处理电镀废水研究.天津:河北工业大学硕士学位论文,2012WANG Haidong.Treatment of electroplating wastewater by electrochemical process.Tianjin:Master Dissertation of Hebei University of Technology,2012(in Chinese)
    [5] 甄豪波,胡勇有,程建华.壳聚糖交联沸石小球对Cu2+、Ni2+及Cd2+的吸附特性.环境科学学报,2011,31(7):1369-1376ZHEN Haobo,HU Yongyou,CHENG Jianhua.Adsorption of Cu2+,Ni2+,and Cd2+ by chitosan cross-linked zeolite beads.Acta Scientiae Circumstantiae,2011,31(7):1369-1376(in Chinese)
    [6] 张蕊,葛滢.稻壳基活性炭制备及其对重金属吸附研究.环境污染与防治,2011,33(2):41-45ZHANG Rui,GE Ying.Preparation of rice husk based activated carbon and its adsorption capacity for heavy metals.Environmental Pollution & Control,2011,33(2):41-45(in Chinese)
    [7] 姜腾达.粘土矿物对水中Pb2+、Cu2+、Cd2+的吸附及机理研究.长沙:中南大学硕士学位论文,2014JIANG Tengda.Study of Pb2+,Cu2+,Cd2+ adsorbed on clay minerals under aqueous solution and adsorption mechanism.Changsha:Master Dissertation of Central South University,2014(in Chinese)
    [8] 雷娟,易筱筠,杨琛,等.改性花生壳对Cd(Ⅱ)和Pb(Ⅱ)的吸附机理.环境工程学报,2014,8(5):1775-1783LEI Juan,YI Xiaoyun,YANG Chen,et al.Adsorption mechanism of modified peanut shell to Cd(Ⅱ) and Pb(II).Chinese Journal of Environmental Engineering,2014,8(5):1775-1783(in Chinese)
    [9] 汪婷,高滢,金晓英,等.纳米四氧化三铁同步去除水中的Pb(Ⅱ)和Cr(Ⅲ)离子.环境工程学报,2013,7(9):3476-3482WANG Ting,GAO Ying,JIN Xiaoying,et al.Simultaneous removal of Pb(II) and Cr(III) from wastewater by magnetite nanoparticles.Chinese Journal of Environmental Engineering,2013,7(9):3476-3482(in Chinese)
    [10] YANTASEE W.,LIN Yuehe,ALFORD K.L.,et al.Electrophilic aromatic substitutions of amine and sulfonate onto fine-grained activated carbon for aqueous-phase metal ion removal.Separation Science and Technology,2004,39(14):3263-3279
    [11] YANG Guangxi,JIANG Hong.Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater.Water Research,2014,48:396-405
    [12] ZHU Huijie,JIA Yongfeng,WU Xing,et al.Removal of arsenic from water by supported nano zero-valent iron on activated carbon.Journal of Hazardous Materials,2009,172(2/3):1591-1596
    [13] GUO Xuetao,YANG Chen,WU Yinai,et al.The influences of pH and ionic strength on the sorption of tylosin on goethite.Environmental Science and Pollution Research,2014,21(4):2572-2580
    [14] HAMIDPOUR M.,KALBASI M.,AFYUNI M.,et al.Sorption hysteresis of Cd(Ⅱ) and Pb(II) on natural zeolite and bentonite.Journal of Hazardous Materials,2010,181(1/2/3):686-691
    [15] CHEN Yiliang,PAN Bingcai,LI Haiyan,et al.Selective removal of Cu (II) ions by using cation-exchange resin-supported polyethyleneimine (PEI) nanoclusters.Environmental Science & Technology,2010,44(9):3508-3513
    [16] LIU Wujun,ZENG Fanxin,JIANG Hong,et al.Adsorption of lead (Pb) from aqueous solution with typha angustifolia biomass modified by SOCl2 activated EDTA.Chemical Engineering Journal,2011,170(1):21-28
    [17] MUNAGAPATI V.S.,YARRAMUTHI V.,NADAVALA S.,et al.Biosorption of Cu (II),Cd (II) and Pb (II) by Acacia leucocephala bark powder:Kinetics,equilibrium and thermodynamics.Chemical Engineering Journal,2010,157(2/3):357-365
    [18] 曹涛涛,宋之光,王思波,等.不同页岩及干酪根比表面积和孔隙结构的比较研究.中国科学:地球科学,2015,45(2):139-151 CAO Taotao,SONG Zhiguang,WANG Sibo,et al.A comparative study of the specific surface area and pore structure of different shales and their kerogens.Science China Earth Sciences,2015,58(4):510-522
    [19] 刘文芳,赵颖,蔡亚君,等.杭锦土负载纳米零价铁对水中甲基橙的脱色研究.工业水处理,2015,35(12):34-39 LIU Wenfang,ZHAO Ying,CAI Yajun,et al.Study on the decolorization of methyl orange in aqueous solution using Hangjin clay-supported nanoscale zero-valent iron.Industrial Water Treatment,2015,35(12):34-39(in Chinese)
    [20] POUSSARD L.,BUREL F.,COUVERCELLE J.P.,et al.Synthesis of new anionic HTPB-based polyurethane elastomers:Aqueous dispersion and physical Properties.Journal of Applied Polymer Science,2006,100(4):3312-3322
    [21] 高晟,温艳珍,薛永强,等.粒度对纳米氧化镁吸附苯的热力学性质影响.离子交换与吸附,2013,29(2):148-158 GAO Sheng,WEN Yanzhen,XUE Yongqiang,et al.The effects of particle size on thermodynamics properties for adsorption of benzene on nanometer magnesium oxide.Ion Exchange and Adsorption,2013,29(2):148-158(in Chinese)
    [22] KANEL S.R.,GRENÈCHE J.M.,CHOI H.Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material.Environmental Science & Technology,2006,40(6):2045-2050
    [23] BOPARAI H.K.,JOSEPH M.,O'CARROLL D.Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles.Journal of Hazardous Materials,2011,186(1):458-465
    [24] CHAKRABORTY R.,KARMAKAR S.,MUKHERJEE S.,et al.Kinetic evaluation of chromium(VI) sorption by water lettuce (pistia).Water Science and Technology,2014,69(1):195-201
    [25] AYOOB S.,GUPTA A.K.,BHAKAT P.B.,et al.Investigations on the kinetics and mechanisms of sorptive removal of fluoride from water using alumina cement granules.Chemical Engineering Journal,2008,140(1/2/3):6-14
    [26] 李燕捷,马天行,郭学涛,等.纳米二氧化钛负载腐植酸对菲的吸附行为.农业环境科学学报,2014,33(11):2247-2253 LI Yanjie,MA Tianxing,GUO Xuetao,et al.Sorption of phenanthrene on nano-TiO2 coated with humic acid.Journal of Agro-Environment Science,2014,33(11):2247-2253(in Chinese)
    [27] KIM W.K.,SHIM T.,KIM Y.S.,et al.Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures.Bioresource Technology,2013,138:266-270
    [28] EFECAN N.Characterization of the adsorption behaviour of aqueous Cd(Ⅱ) and Ni(Ⅱ) ions on nanoparticles of zero-valent iron.Turkey:Master Dissertation of I·zmir Institute of Technology,2008
    [29] BOPARAI H.K.,JOSEPH M.,O'CARROLL D.M.Cadmium (Cd2+) removal by nano zerovalent iron:Surface analysis,effects of solution chemistry and surface complexation modeling.Environmental Science and Pollution Research,2013,20(9):6210-6221
    [30] JEONG C.Y.,WANG J.J.,DODLA S.K.,et al.Effect of biochar amendment on tylosin adsorption-desorption and transport in two different soils.Journal of Environmental Quality,2012,41(4):1185-1192
  • 期刊类型引用(17)

    1. 金军,王乙硕,冼威澄,刘豪,党志,黄飞. 稻秆生物炭对水体Pb~(2+)的吸附特性及机制定量化. 科学技术与工程. 2024(19): 8362-8371 . 百度学术
    2. 邹成龙,徐志威,聂发辉,吴道,王佳琪. Fe_3O_4@SA/GO凝胶球的制备及对亚甲基蓝的吸附性能. 环境工程学报. 2022(01): 121-132 . 本站查看
    3. 聂发辉,吴道,邹成龙,黄慧倩,吴钦,刘占孟. 磁性海藻酸钙凝胶球的制备及其对亚甲基蓝的吸附. 安全与环境学报. 2022(01): 458-467 . 百度学术
    4. 骆欣,刘瑞森,叶锦莎. 葵花籽壳生物炭对水中Cd~(2+)的吸附研究. 化工新型材料. 2022(03): 215-219+225 . 百度学术
    5. 马茹茹,刘锦卉,史晓凯,李磊,刘利军,向云. 不同种类生物炭对砷污染土壤的改良效应. 环境污染与防治. 2021(02): 200-205 . 百度学术
    6. 黄艳虹,高凡,郭伟,郭家选,王敬贤,许佟. 氨基生物炭覆盖对沉积物中铜、铅释放的影响. 环境化学. 2021(06): 1705-1713 . 百度学术
    7. 陈文荣,马旭佳,郭燕萍,徐佳慧,韦金沁,施洁. 镉污染土壤低吸收水稻阻隔技术研究及应用. 浙江师范大学学报(自然科学版). 2021(04): 420-428 . 百度学术
    8. 邱立萍,刘佩玉,黄晓娟,庄绪艳. 文物埋藏土壤中Cu、Fe的吸附解吸特征研究. 应用化工. 2020(05): 1152-1155+1159 . 百度学术
    9. 杨家鹏,蔡子睿,黄碧捷,左韧,王得梁. 生物炭复合材料的制备及其应用研究. 绿色科技. 2020(24): 209-212 . 百度学术
    10. 王淑娟,郭伟,史江红,王云楷,施胜利,张笑晴,张涛. 氨基修饰稻壳生物炭对水溶液中铀的吸附动力学特性. 环境科学研究. 2019(02): 347-355 . 百度学术
    11. 代兵,谭长银,曹雪莹,谢雨呈,朱上游,柏佳,彭曦. 荷梗生物炭理化性质及其对水中Cd的吸附机制. 环境科学研究. 2019(03): 513-522 . 百度学术
    12. 单伟,郁红艳,邹路易,滕跃,严群. 改性硅酸钙对Cd~(2+)的吸附性能及其对Cd污染土壤的修复潜力. 环境工程学报. 2019(04): 918-926 . 本站查看
    13. 罗海艳,李丹阳,刘寿涛,宋正国,刘玉玲,刘孝利,铁柏清. 铁锰改性椰壳炭对土壤镉形态及水稻吸收积累镉的影响. 环境科学研究. 2019(05): 857-865 . 百度学术
    14. 李丹阳,杨蕊嘉,罗海艳,刘寿涛,刘玉玲,彭鸥,铁柏清. 十六烷基三甲基溴化铵改性生物炭对水中镉离子吸附性能的影响. 环境工程学报. 2019(08): 1809-1821 . 本站查看
    15. 邹小玲,余江涛. 改性生物质炭对重金属Cd的吸附作用研究进展. 应用化工. 2019(10): 2495-2498 . 百度学术
    16. 郜礼阳,邓金环,唐国强,黄祥能,蔡昆争,蔡一霞,黄飞. 不同温度桉树叶生物炭对Cd~(2+)的吸附特性及机制. 中国环境科学. 2018(03): 1001-1009 . 百度学术
    17. 高超群. 生物炭在土壤环境中的应用. 安徽农学通报. 2017(23): 55-57+60 . 百度学术

    其他类型引用(36)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 6.1 %DOWNLOAD: 6.1 %FULLTEXT: 85.7 %FULLTEXT: 85.7 %META: 8.2 %META: 8.2 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 76.6 %其他: 76.6 %Ashburn: 3.7 %Ashburn: 3.7 %Beijing: 5.0 %Beijing: 5.0 %Changchun: 0.4 %Changchun: 0.4 %Changsha: 0.9 %Changsha: 0.9 %Chanshan: 0.2 %Chanshan: 0.2 %Chengdu: 0.2 %Chengdu: 0.2 %Fenyang: 0.6 %Fenyang: 0.6 %Guangzhou Shi: 0.2 %Guangzhou Shi: 0.2 %Guiyang: 0.2 %Guiyang: 0.2 %Hangzhou: 0.9 %Hangzhou: 0.9 %Hengyang: 0.6 %Hengyang: 0.6 %Huai'an: 0.2 %Huai'an: 0.2 %Kunshan: 0.2 %Kunshan: 0.2 %Mountain View: 0.2 %Mountain View: 0.2 %Nanjing: 0.4 %Nanjing: 0.4 %Newark: 1.3 %Newark: 1.3 %Shanghai: 0.9 %Shanghai: 0.9 %Shijiazhuang: 0.6 %Shijiazhuang: 0.6 %Tianjin: 0.4 %Tianjin: 0.4 %Wuhan: 0.4 %Wuhan: 0.4 %XX: 3.7 %XX: 3.7 %Yanqing Qu: 0.4 %Yanqing Qu: 0.4 %Yuncheng: 0.2 %Yuncheng: 0.2 %上海: 0.2 %上海: 0.2 %北海: 0.2 %北海: 0.2 %荆州: 0.2 %荆州: 0.2 %郑州: 0.4 %郑州: 0.4 %青岛: 0.2 %青岛: 0.2 %其他AshburnBeijingChangchunChangshaChanshanChengduFenyangGuangzhou ShiGuiyangHangzhouHengyangHuai'anKunshanMountain ViewNanjingNewarkShanghaiShijiazhuangTianjinWuhanXXYanqing QuYuncheng上海北海荆州郑州青岛Highcharts.com
计量
  • 文章访问数:  2475
  • HTML全文浏览数:  1929
  • PDF下载数:  873
  • 施引文献:  53
出版历程
  • 收稿日期:  2016-04-22
  • 刊出日期:  2016-10-20
马天行, 杨琛, 江鲜英, 党志, 李筱琴. 纳米零价铁改性氨基生物炭的制备及对Cd (Ⅱ)的吸附和解吸特性[J]. 环境工程学报, 2016, 10(10): 5433-5439. doi: 10.12030/j.cjee.201603178
引用本文: 马天行, 杨琛, 江鲜英, 党志, 李筱琴. 纳米零价铁改性氨基生物炭的制备及对Cd (Ⅱ)的吸附和解吸特性[J]. 环境工程学报, 2016, 10(10): 5433-5439. doi: 10.12030/j.cjee.201603178
MA Tianxing, YANG Chen, JIANG Xianying, DANG Zhi, LI Xiaoqin. Adsorption and desorption of Cd(Ⅱ) on amino biochar modified by nano zero valent iron[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5433-5439. doi: 10.12030/j.cjee.201603178
Citation: MA Tianxing, YANG Chen, JIANG Xianying, DANG Zhi, LI Xiaoqin. Adsorption and desorption of Cd(Ⅱ) on amino biochar modified by nano zero valent iron[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5433-5439. doi: 10.12030/j.cjee.201603178

纳米零价铁改性氨基生物炭的制备及对Cd (Ⅱ)的吸附和解吸特性

  • 1.  华南理工大学环境与能源学院, 广州 510006
  • 2.  工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006
  • 3.  固体废物处理与资源化广东省环境保护重点实验室, 广州 510006
基金项目:

国家高技术研究发展计划(863)项目(2013AA06A209)

摘要: 通过化学负载方法成功制得纳米零价铁改性氨基生物炭复合材料(ABC/NZVI),对其进行表征和研究了其对重金属Cd(Ⅱ)的吸附和解吸特性。结果表明,改性后,ABC/NZVI具有氨基官能团并且表面负载了纳米零价铁,比表面积为244 m2·g-1,在水溶液中稳定悬浮的平均粒径是845 nm。ABC/NZVI对Cd(Ⅱ)的吸附大约在457 min内即可达到吸附平衡,吸附动力学可用伪二级动力学模型较好地拟合(R2≥0.990);对Cd(Ⅱ)表现出优良的吸附性能,饱和吸附容量为12.4 mg·g-1,吸附/解吸等温线均呈现出明显的非线性,可用Langmuir模型较好地拟合(R2≥0.960),而且出现明显的解吸滞后现象,滞后系数(HI)为0.536。因此,ABC/NZVI对Cd(Ⅱ)的吸附可能为单分子层的化学吸附,主要的吸附机理可能涉及配合和沉淀两种作用。

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回