邻苯二酚-2,3-双加氧酶基因在芘降解菌基因组的整合与表达

赵亚光, 段魏魏, 徐苗, 吴盼云, 肖璐梅, 马腾飞, 晁群芳. 邻苯二酚-2,3-双加氧酶基因在芘降解菌基因组的整合与表达[J]. 环境工程学报, 2019, 13(1): 232-237. doi: 10.12030/j.cjee.201807117
引用本文: 赵亚光, 段魏魏, 徐苗, 吴盼云, 肖璐梅, 马腾飞, 晁群芳. 邻苯二酚-2,3-双加氧酶基因在芘降解菌基因组的整合与表达[J]. 环境工程学报, 2019, 13(1): 232-237. doi: 10.12030/j.cjee.201807117
ZHAO Yaguang, DUAN Weiwei, XU Miao, WU Panyun, XIAO Lumei, MA Tengfei, CHAO Qunfang. Integration and expression of catechol-2,3-dioxygenase gene in pyrene degrading bacteria genome[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 232-237. doi: 10.12030/j.cjee.201807117
Citation: ZHAO Yaguang, DUAN Weiwei, XU Miao, WU Panyun, XIAO Lumei, MA Tengfei, CHAO Qunfang. Integration and expression of catechol-2,3-dioxygenase gene in pyrene degrading bacteria genome[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 232-237. doi: 10.12030/j.cjee.201807117

邻苯二酚-2,3-双加氧酶基因在芘降解菌基因组的整合与表达

  • 基金项目:

    国家自然科学基金资助项目(31460027)

Integration and expression of catechol-2,3-dioxygenase gene in pyrene degrading bacteria genome

  • Fund Project:
  • 摘要: 为了构建能够稳定遗传且高效降解多环芳烃的工程菌,利用PCR技术对Pseudomonas songnenensis wp3-1的邻苯二酚-2, 3-双加氧酶(C23O)基因进行克隆,并将其与自杀性载体pUTmini-Tn5连接,得到重组载体pUTmini-Tn5-C23O。在三亲接合作用下,经mini-Tn5转座子将重组载体pUTmini-Tn5-C23O中的C23O基因整合到菌株Pseudomonas sp. wp4的染色体DNA中,最终得到基因工程菌wp4-C23O。在不同pH、温度下,菌株wp4和工程菌wp4-C23O对浓度为50 mg?L-1的芘进行降解7 d。2株菌降解最适温度为37 ℃、最适pH为7.5。在此条件下,工程菌wp4-C23O对芘降解率显著高于wp4菌株(P<0.05),降解率提高11.45%。以PAHs降解优势菌株为受体构建工程菌可以去除石油污染土壤中的PAHs。
  • 加载中
  • [1] LEE J, MIN K R, KIM Y. Cloning and overexpression of methylcatechol-2, 3-dioxygenase gene from toluene-degrading Pseudomonas putida, mt-2 (pWWO)[J]. Archives of Pharmacal Research, 1992, 15(4): 360-364.
    [2] 张杰, 刘永生, 冯家勋, 等. 邻苯二酚-2,3-双加氧酶基因克隆、定位和高效表达[J]. 应用与环境生物学报, 2003, 9(5):542-545.
    [3] 胡日查, 孙立波. 低温-1,2,4-TCB降解菌的选育、降解特性及邻苯二酚-1,2-双加氧酶基因表达水平[J]. 环境工程学报, 2013, 7 (2): 777-782.
    [4] BALDERAS-HERNANDEZ V E, TREVINO-QUINTANILLA L G, HERNANDEZ-CHAVEZ G, et al. Catechol biosynthesis from glucose in Escherichia coli anthranilate-overproducer strains by heterologous expression of anthranilate-1,2-dioxygenase from Pseudomonas aeruginosa PAO1[J]. Microbial Cell Factories, 2014, 13(1): 1-11.
    [5] ARAUJO S S, NEVES C M, GUIMARAES S L, et al. Structural and kinetic characterization of recombinant 2-hydroxymuconate semialdehyde dehydrogenase from Pseudomonas putida G7[J]. Archives of Biochemistry & Biophysics, 2015, 579(1):8-17.
    [6] LIN J, MILASE R N. Purification and characterization of catechol-1,2-dioxygenase from Acinetobacter sp. Y64 strain and Escherichia coli transformants[J]. Protein Journal, 2015, 34(6): 1-13.
    [7] LEE N, KWON D Y.Characteristics of a recombinant-2,3-dihydroxybiphenyl-1,2-dioxygenase from Comamonas sp. expressed in Escherichia coli[J]. Indian Journal of Microbiology, 2016, 56(4): 1-9.
    [8] 杜宏伟, 武俊, 肖琳, 等. 聚磷激酶基因在假单胞菌中的整合和表达[J]. 环境科学, 2009, 30(10): 3011-3015.
    [9] 蔡丰聚, 徐英黔. 基因工程菌稳定性的若干影响因素[J]. 生命的化学, 2006, 26(5): 451-453.
    [10] NAGAYAMA H, SUGAWARA T, ENDO R, et al. Isolation of oxygenase genes for indigo-forming activity from an artificially polluted soil metagenome by functional screening using Pseudomonas putida strains as hosts[J]. Applied Microbiology and Biotechnology, 2015, 99(10): 4453-4470.
    [11] 陈志丹, 晁群芳, 杨滨银, 等. 一株芘降解菌B2的降解条件优化及降解基因[J]. 环境工程学报, 2012, 6(10): 3795-3800.
    [12] 谢云. 高效石油烷烃降解菌及原油降解基因工程菌构建研究[D]. 西安: 西北大学, 2014.
    [13] 聂麦茜, 张志杰, 雷萍. 优势短杆菌对多环芳烃的降解性能[J]. 环境科学, 2001, 22(6): 83-85.
    [14] 杨轩, 张威, 李师翁, 等. 多环芳烃降解菌的分离鉴定及其生理特性研究[J]. 环境科学学报, 2012, 32(5): 1033-1040.
    [15] 卫昆, 陈烁娜, 尹华, 等. 蜡状芽胞杆菌对芘的降解特性及降解酶研究[J]. 环境科学学报, 2016, 36(2): 506-512.
    [16] 胡凤钗, 苏振成, 孙健, 等. 高效芘降解菌N12的分离鉴定与降解特性[J]. 应用生态学报, 2011, 22(6):1566-1572.
    [17] HU F C, LI X Y, SU Z C, et al. Identification and degradation capability of three pyrene-degrading Gordonia sp.strains [J]. Chinese Journal of Applied Ecology, 2011, 22(7): 1857-1862.
    [18] AL-THUKAIR A A, MALIK K. Pyrene metabolism by the novel bacterial strains Burkholderia fungorum (T3A13001) and Caulobacter sp (T2A12002) isolated from an oil-polluted site in the Arabian Gulf[J]. International Biodeterioration & Biodegradation, 2016, 110: 32-37.
    [19] JIN J, YAO J, ZHANG Q, et al. Biodegradation of pyrene by pseudomonas sp. JPN2 and its initial degrading mechanism study by combining the catabolic nahAc gene and structure-based analyses[J]. Chemosphere, 2016, 164: 379-386.
  • 加载中
计量
  • 文章访问数:  2691
  • HTML全文浏览数:  2605
  • PDF下载数:  114
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-01-08

邻苯二酚-2,3-双加氧酶基因在芘降解菌基因组的整合与表达

  • 1. 新疆大学生命科学与技术学院,乌鲁木齐 830046
基金项目:

国家自然科学基金资助项目(31460027)

摘要: 为了构建能够稳定遗传且高效降解多环芳烃的工程菌,利用PCR技术对Pseudomonas songnenensis wp3-1的邻苯二酚-2, 3-双加氧酶(C23O)基因进行克隆,并将其与自杀性载体pUTmini-Tn5连接,得到重组载体pUTmini-Tn5-C23O。在三亲接合作用下,经mini-Tn5转座子将重组载体pUTmini-Tn5-C23O中的C23O基因整合到菌株Pseudomonas sp. wp4的染色体DNA中,最终得到基因工程菌wp4-C23O。在不同pH、温度下,菌株wp4和工程菌wp4-C23O对浓度为50 mg?L-1的芘进行降解7 d。2株菌降解最适温度为37 ℃、最适pH为7.5。在此条件下,工程菌wp4-C23O对芘降解率显著高于wp4菌株(P<0.05),降解率提高11.45%。以PAHs降解优势菌株为受体构建工程菌可以去除石油污染土壤中的PAHs。

English Abstract

参考文献 (19)

目录

/

返回文章
返回