短程硝化过程2种亚硝酸盐氧化菌抑制策略探讨

杨宗玥, 付昆明, 廖敏辉, 仇付国, 曹秀芹. 短程硝化过程2种亚硝酸盐氧化菌抑制策略探讨[J]. 环境工程学报, 2019, 13(1): 222-231. doi: 10.12030/j.cjee.201806158
引用本文: 杨宗玥, 付昆明, 廖敏辉, 仇付国, 曹秀芹. 短程硝化过程2种亚硝酸盐氧化菌抑制策略探讨[J]. 环境工程学报, 2019, 13(1): 222-231. doi: 10.12030/j.cjee.201806158
YANG Zongyue, FU Kunming, LIAO Minhui, QIU Fuguo, CAO Xiuqin. Discussion on inhibition strategies of two nitrite oxidizing bacteria in nitritation[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 222-231. doi: 10.12030/j.cjee.201806158
Citation: YANG Zongyue, FU Kunming, LIAO Minhui, QIU Fuguo, CAO Xiuqin. Discussion on inhibition strategies of two nitrite oxidizing bacteria in nitritation[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 222-231. doi: 10.12030/j.cjee.201806158

短程硝化过程2种亚硝酸盐氧化菌抑制策略探讨

  • 基金项目:

    北京市教育委员会科技发展计划项目(SQKM201710016006)

    北京建筑大学市属高校基本科研业务费专项基金资助项目(X18214, X18182)

Discussion on inhibition strategies of two nitrite oxidizing bacteria in nitritation

  • Fund Project:
  • 摘要: 为维持短程硝化稳定,保证亚硝酸盐高效积累,需要对污水处理系统亚硝酸盐氧化菌(NOB)的性质进行深入了解。分别对Nitrospira以及Nitrobacter的动力学参数,以及在活性污泥系统、生物膜系统、颗粒污泥系统中2菌属特性进行比较。经分析后认为,Nitrospira相对于Nitrobacter比增长速率较低,对O2,NO2-底物亲和性较好,适宜生长于低浓度环境中,是A2/O、短程硝化-厌氧氨氧化工艺中的主要NOB菌属;Nitrobacter则适宜在高浓度环境中生长。在颗粒污泥系统中,NOB主要处于污泥内部,由于缺乏O2,NO2-更容易被淘汰出反应器。通过对比短程硝化主要控制参数,认为NOB的抑制策略包括:在活性污泥系统中维持合理的污泥龄(SRT)以及游离氨(FA)浓度;在生物膜系统中对溶解氧(DO)以及水力停留时间(HRT)进行联合控制;在颗粒污泥系统中维持适量剩余NH4+-N,并淘洗出掺杂其中的絮状污泥。此外,利用“饱食饥饿”效应间歇曝气并维持较低的曝停比同样有利于阻止亚硝酸盐被NOB进一步氧化,保证短程硝化稳定运行。
  • 加载中
  • [1] 付昆明, 张杰, 曹相生, 等. 曝气量对不同填料CANON反应器运行效率的影响[J]. 化工学报, 2010, 61(2): 496-503.
    [2] 熊鸿斌, 夏晓宇, 王玉芳, 等. 低C/N值城市污水处理厂出水达标的运行条件优化[J]. 中国给水排水, 2013, 29(1): 92-96.
    [3] 付昆明, 付国, 左早荣. 厌氧氨氧化技术应用于市政污水处理的前景分析[J]. 中国给水排水, 2015, 31(4): 8-13.
    [4] ISHII K, FUJITANI H, SOH K, et al. Enrichment and physiological characterization of a cold-adapted nitrite-oxidizing Nitrotoga sp. from an eelgrass sediment[J]. Applied and Environmental Microbiology, 2017, 83(14): 1-14.
    [5] MAIXNER F, NOGUERA D R, ANNESER B, et al. Nitrite concentration influences the population structure of Nitrospira-like bacteria[J]. Environmental Microbiology, 2006, 8(8):1487-1495.
    [6] MANSER R, GUJER W, SIEGRIST H. Consequences of mass transfer effects on the kinetics of nitrifiers[J]. Water Research, 2005, 39(19): 4633-4642.
    [7] BLACKBURNE R, VADIVELU V M, YUAN Z, et al. Kinetic characterization of an enriched Nitrospira culture with comparison to Nitrobacter[J]. Water Research, 2007, 41(14): 3033-3042.
    [8] FUJITANI H, AOI Y, TSUNEDA S. Selective enrichment of two different types of Nitrospira-like nitrite-oxidizing bacteria from a wastewater treatment plant[J]. Microbes and Environments, 2013, 28(2): 236-243.
    [9] WU J, ZHANG Y, ZHANG M, et al. Effect of nitrifiers enrichment and diffusion on their oxygen half-saturation value measurements[J]. Biochemical Engineering Journal, 2017, 123: 110-116.
    [10] COURTENS E N P, DE CLIPPELEIR H, VLAEMINCK S E, et al. Nitric oxide preferentially inhibits nitrite oxidizing communities with high affinity for nitrite[J]. Journal of Biotechnology, 2015, 193: 120-122.
    [11] PARK M, PARK H, CHANDRAN K. Molecular and kinetic characterization of planktonic Nitrospira spp. selectively enriched from activated sludge[J]. Environmental Science & Technology, 2017, 51(5): 2720-2728.
    [12] LEYVA-DíAZ J C, CALDERóN K, RODRíGUEZ F A, et al. Comparative kinetic study between moving bed biofilm reactor-membrane bioreactor and membrane bioreactor systems and their influence on organic matter and nutrients removal[J]. Biochemical Engineering Journal, 2013, 77: 28-40.
    [13] CRUVELLIER N, POUGHON L, CREULY C, et al. Growth modelling of Nitrosomonas europaea ATCC? 19718 and Nitrobacter winogradskyi ATCC? 25391: A new online indicator of the partial nitrification[J]. Bioresource Technology, 2016, 220:369-377.
    [14] CIUDAD G, WERNER A, BORNHARDT C, et al. Differential kinetics of ammonia-and nitrite-oxidizing bacteria: A simple kinetic study based on oxygen affinity and proton release during nitrification[J]. Process Biochemistry, 2006, 41(8): 1764-1772.
    [15] NOWKA B, DAIMS H, SPIECK E. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: Nitrite availability as a key factor in niche differentiation[J]. Applied and Environmental Microbiology, 2015, 81(2): 745-753.
    [16] RONGSAYAMANONT C, LIMPIYAKORN T, LAW B, et al. Relationship between respirometric activity and community of entrapped nitrifying bacteria: Implications for partial nitrification[J]. Enzyme and Microbial Technology, 2010, 46(3/4):229-236.
    [17] 姚倩, 彭党聪, 赵俏迪, 等. 活性污泥中硝化螺菌(Nitrospira)的富集及其动力学参数[J]. 环境科学, 2017, 38(12): 5201-5207.
    [18] KIM D, KIM S. Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics[J]. Water Research, 2006, 40(5): 887-894.
    [19] NOGUEIRA R, MELO L F. Competition between Nitrospira spp. and Nitrobacter spp. in nitrite-oxidizing bioreactors[J]. Biotechnology and Bioengineering, 2006, 95(1):169-175.
    [20] USHIKI N, JINNO M, FUJITANI H, et al. Nitrite oxidation kinetics of two Nitrospira strains: The quest for competition and ecological niche differentiation[J]. Journal of Bioscience and Bioengineering, 2017, 123(5): 581-589.
    [21] CéBRON A, GARNIER J. Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria: Detection, quantification and growth along the lower Seine River (France) [J]. Water Research, 2005, 39(20): 4979-4992.
    [22] KOCH H, LüCKER S, ALBERTSEN M, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira[J]. Proceedings of the National Academy of Sciences, 2015, 112(36): 11371-11376.
    [23] HUANG Z, GEDALANGA P B, ASVAPATHANAGUL P, et al. Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor[J]. Water Research, 2010, 44(15): 4351-4358.
    [24] 于莉芳, 杜倩倩, 傅学焘, 等. 城市污水中硝化菌群落结构与性能分析[J]. 环境科学, 2016, 37(11): 4366-4371.
    [25] 任武昂. 城市污水输送、处理过程中氮组分的迁变特性及转化规律研究[D]. 西安: 西安建筑科技大学, 2015.
    [26] YU L, LI R, DELATOLLA R, et al. Natural continuous influent nitrifier immigration effects on nitrification and the microbial community of activated sludge systems[J]. Journal of Environmental Sciences, 2018, 74: 159-167.
    [27] JAUFFUR S, ISAZADEH S, FRIGON D. Should activated sludge models consider influent seeding of nitrifiers? Field characterization of nitrifying bacteria[J]. Water Science & Technology, 2014, 70(9): 1526-1532.
    [28] 曾薇, 张丽敏, 王安其, 等. 污水处理系统中硝化菌的菌群结构和动态变化[J]. 中国环境科学, 2015, 35(11): 3257-3265.
    [29] 刘国华, 陈燕, 范强, 等. 溶解氧对活性污泥系统的脱氮效果和硝化细菌群落结构的影响[J]. 环境科学学报, 2016, 36(6): 1971-1978.
    [30] ABZAZOU T, ARAUJO R M, AUSET M, et al. Tracking and quantification of nitrifying bacteria in biofilm and mixed liquor of a partial nitrification MBBR pilot plant using fluorescence in situ hybridization[J]. Science of the Total Environment, 2016, 541: 1115-1123.
    [31] LEENEN E J T M, VAN BOXTEL A M G A, ENGLUND G, et al. Reduced temperature sensitivity of immobilized Nitrobacteragilis cells caused by diffusion limitation[J]. Enzyme and Microbial Technology, 1997, 20(8): 573-580.
    [32] PERSSON F, SULTANA R, SUAREZ M, et al. Structure and composition of biofilm communities in a moving bed biofilm reactor for nitritation-anammox at low temperatures[J]. Bioresource Technology, 2014, 154: 267-273.
    [33] POOT V, HOEKSTRA M, GELEIJNSE M A A, et al. Effects of the residual ammonium concentration on NOB repression during partial nitritation with granular sludge[J]. Water Research, 2016, 106: 518-530.
    [34] FANG F, NI B, LI X, et al. Kinetic analysis on the two-step processes of AOB and NOB in aerobic nitrifying granules[J]. Applied Microbiology and Biotechnology, 2009, 83(6): 1159-1169.
    [35] ISANTA E, REINO C, CARRERA J, et al. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor[J]. Water Research, 2015, 80: 149-158.
    [36] ZHU T, XU B, WU J. Experimental and mathematical simulation study on the effect of granule particle size distribution on partial nitrification in aerobic granular reactor[J]. Biochemical Engineering Journal, 2018, 134: 22-29.
    [37] PARK S, BAE W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid[J]. Process Biochemistry, 2009, 44(6): 631-640.
    [38] PEDROUSO A, VAL DEL RíO á, MORALES N, et al. Nitrite oxidizing bacteria suppression based on in-situ free nitrous acid production at mainstream conditions[J]. Separation and Purification Technology, 2017, 186: 55-62.
    [39] KIM D, LEE D, KELLER J. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH[J]. Bioresource Technology, 2006, 97(3): 459-468.
    [40] VADIVELU V M, KELLER J, YUAN Z. Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture[J]. Water Research, 2007, 41(4): 826-834.
    [41] POLLICE A, TANDOI V, LESTINGI C. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate[J]. Water Research, 2002, 36(10): 2541-2546.
    [42] WU J, HE C, VAN LOOSDRECHT M C M, et al. Selection of ammonium oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB) based on conversion rates[J]. Chemical Engineering Journal, 2016, 304: 953-961.
    [43] WU C, PENG Y, WANG S, et al. Effect of sludge retention time on nitrite accumulation in real-time control biological nitrogen removal sequencing batch reactor[J]. Chinese Journal of Chemical Engineering, 2011, 19(3): 512-517.
    [44] RONGSAYAMANONT C, LIMPIYAKORN T, KHAN E. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors[J]. Bioresource Technology, 2014, 164: 254-263.
    [45] CHEN Z, WANG X, YANG Y, et al. Partial nitrification and denitrification of mature landfill leachate using a pilot-scale continuous activated sludge process at low dissolved oxygen[J]. Bioresource Technology, 2016, 218: 580-588.
    [46] BAO P, WANG S, MA B, et al. Achieving partial nitrification by inhibiting the activity of Nitrospira-like bacteria under high-DO conditions in an intermittent aeration reactor[J]. Journal of Environmental Sciences, 2017, 56: 71-78.
    [47] WETT B, HELL M, NYHUIS G, et al. Syntrophy of aerobic and anaerobic ammonia oxidisers[J]. Water Science & Technology, 2010, 61(8): 1915-1922.
    [48] 孟婷, 杨宏. 活性污泥快速实现短程硝化及稳定高效运行[J]. 中国给水排水, 2017, 33(15): 1-5.
    [49] ALMEIDA R G B D, SANTOS C E D D, LüDERS T C, et al. Nitrogen removal by simultaneous partial nitrification, anammox and denitrification (SNAD) in a structured-bed reactor treating animal feed processing wastewater: Inhibitory effects and bacterial community[J]. International Biodeterioration & Biodegradation, 2018, 133: 108-115.
    [50] SAYAVEDRA-SOTO L, FERRELL R, DOBIE M, et al. Nitrobacter winogradskyi transcriptomic response to low and high ammonium concentrations[J]. FEMS Microbiology Letters, 2015, 362(3): 1-7.
    [51] 王会芳, 付昆明, 左早荣, 等. 水力停留时间和溶解氧对陶粒CANON反应器的影响[J]. 环境科学, 2015, 36(11): 4161-4167.
    [52] 付昆明, 张杰, 曹相生, 等. 曝气量对不同填料CANON反应器运行效率的影响[J]. 化工学报,2010, 61(2): 496-503.
    [53] PéREZ J, LOTTI T, KLEEREBEZEM R, et al. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: A model-based study[J]. Water Research, 2014, 66: 208-218.
    [54] 孙延芳, 韩晓宇, 张树军, 等. 颗粒+絮体污泥CANON工艺的启动与SRT影响研究[J]. 环境科学, 2017, 38(2): 672-678.
    [55] AKABOCI T R V, GICH F, RUSCALLEDA M, et al. Assessment of operational conditions towards mainstream partial nitritation-anammox stability at moderate to low temperature: Reactor performance and bacterial community[J]. Chemical Engineering Journal, 2018, 350: 192-200.
    [56] 李冬, 张杰. 城市污水自养脱氮工艺研究[M]. 中国建筑工业出版社, 2017.
    [57] 付昆明, 周厚田, 苏雪莹, 等. 生物膜短程硝化系统的恢复及其转化为CANON工艺的过程[J]. 环境科学, 2017, 38(4): 1536-1543.
    [58] WETT B, MURTHY S, TAKáCS I, et al. Key parameters for control of DEMON deammonification process[J]. Water Practice, 2007, 1(5): 1-11.
  • 加载中
计量
  • 文章访问数:  3084
  • HTML全文浏览数:  3003
  • PDF下载数:  146
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-01-08

短程硝化过程2种亚硝酸盐氧化菌抑制策略探讨

  • 1. 北京建筑大学城市雨水系统与水环境教育部重点实验室,中-荷污水处理技术研发中心,北京100044
基金项目:

北京市教育委员会科技发展计划项目(SQKM201710016006)

北京建筑大学市属高校基本科研业务费专项基金资助项目(X18214, X18182)

摘要: 为维持短程硝化稳定,保证亚硝酸盐高效积累,需要对污水处理系统亚硝酸盐氧化菌(NOB)的性质进行深入了解。分别对Nitrospira以及Nitrobacter的动力学参数,以及在活性污泥系统、生物膜系统、颗粒污泥系统中2菌属特性进行比较。经分析后认为,Nitrospira相对于Nitrobacter比增长速率较低,对O2,NO2-底物亲和性较好,适宜生长于低浓度环境中,是A2/O、短程硝化-厌氧氨氧化工艺中的主要NOB菌属;Nitrobacter则适宜在高浓度环境中生长。在颗粒污泥系统中,NOB主要处于污泥内部,由于缺乏O2,NO2-更容易被淘汰出反应器。通过对比短程硝化主要控制参数,认为NOB的抑制策略包括:在活性污泥系统中维持合理的污泥龄(SRT)以及游离氨(FA)浓度;在生物膜系统中对溶解氧(DO)以及水力停留时间(HRT)进行联合控制;在颗粒污泥系统中维持适量剩余NH4+-N,并淘洗出掺杂其中的絮状污泥。此外,利用“饱食饥饿”效应间歇曝气并维持较低的曝停比同样有利于阻止亚硝酸盐被NOB进一步氧化,保证短程硝化稳定运行。

English Abstract

参考文献 (58)

目录

/

返回文章
返回