废玻璃/铝渣人工沸石对水中Ca2+的吸附

张亚峰, 安路阳, 尚书, 宋迪慧, 张立涛, 徐歆未, 马红超. 废玻璃/铝渣人工沸石对水中Ca2+的吸附[J]. 环境工程学报, 2019, 13(1): 49-61. doi: 10.12030/j.cjee.201806101
引用本文: 张亚峰, 安路阳, 尚书, 宋迪慧, 张立涛, 徐歆未, 马红超. 废玻璃/铝渣人工沸石对水中Ca2+的吸附[J]. 环境工程学报, 2019, 13(1): 49-61. doi: 10.12030/j.cjee.201806101
ZHANG Yafeng, AN Luyang, SHANG Shu, SONG Dihui, ZHANG Litao, XU Xinwei, MA Hongchao. Aqueous calcium ion adsorption performance of artificial zeolite made from waste glass and aluminum slag[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 49-61. doi: 10.12030/j.cjee.201806101
Citation: ZHANG Yafeng, AN Luyang, SHANG Shu, SONG Dihui, ZHANG Litao, XU Xinwei, MA Hongchao. Aqueous calcium ion adsorption performance of artificial zeolite made from waste glass and aluminum slag[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 49-61. doi: 10.12030/j.cjee.201806101

废玻璃/铝渣人工沸石对水中Ca2+的吸附

  • 基金项目:

    国家重点研发计划(2017YFB0603500)

Aqueous calcium ion adsorption performance of artificial zeolite made from waste glass and aluminum slag

  • Fund Project:
  • 摘要: 利用废玻璃和铝渣制备沸石,进而表征沸石结构特征并研究其对水中Ca2+的吸附性能。采用批式实验考察不同温度下沸石用量、初始pH、振荡频率、接触时间对吸附量的影响,并研究吸附过程热力学、动力学特征。结果表明,吸附量随沸石用量增加而减小、随接触时间延长而增大。初始pH和振荡频率对吸附量影响较显著。温度变化对平衡吸附量影响不大,但升高温度可显著缩短吸附平衡时间。最佳工艺参数为:沸石用量20 g·L-1,初始pH 6~8,振荡频率150 r·min-1,接触时间60 min,此时吸附量约16 mg·g-1。Langmuir等温线最符合沸石吸附水中Ca2+过程,表明该过程是均质单分子层吸附。动力学特征最符合准二级动力学方程,证实该过程主要受离子交换、颗粒外液膜扩散和颗粒内扩散控制。该沸石对水中Ca2+吸附过程是物理吸附和化学吸附并存的自发、吸热、熵增过程。该沸石可较好地去除水中Ca2+,故具有一定软化硬水能力。
  • 加载中
  • [1] 张浩程. 金沙江某水厂低浊水采用药剂软化法除硬度的试验研究[D]. 重庆: 重庆大学, 2015.
    [2] ZHI S, ZHANG K. Hardness removal by a novel electrochemical method[J]. Desalination, 2016, 381: 8-14.
    [3] 黎新. 化学沉淀法去除稀土废水中钙镁的研究[D]. 西安: 长安大学, 2016.
    [4] LI J, KONER S, GERMAN M, et al. Aluminum-cycle ion exchange process for hardness removal: a new approach for sustainable softening[J]. Environmental Science & Technology, 2016, 50(21): 11943-11950.
    [5] 李巧云, 贺艳, 徐梦雪, 等. 地质聚合物基无机膜去除水中钙、镁离子的研究[J]. 功能材料, 2017, 48 (1): 1215-1220.
    [6] 张显球, 张林生, 吕锡武. 纳滤软化除盐效果的研究[J]. 水处理技术, 2004, 30(6): 352-355.
    [7] 徐浩, 延卫, 汤成莉. 水垢的电化学去除工艺与机理研究[J]. 西安交通大学学报, 2009, 43(5): 104-108.
    [8] 张硕, 王栋, 陈远超, 等. 热水环境中Na+活化斜发沸石吸附钙离子除硬过程研究[J]. 环境科学, 2015, 36(2): 744-750.
    [9] JI X D, MA Y Y, PENG S H, et al. Simultaneous removal of aqueous Zn2+, Cu2+, Cd2+, and Pb2+ by zeolites synthesized from low-calcium and high-calcium fly ash[J]. Water Science and Technology, 2017, 76(7/8): 2106-2119.
    [10] 黄京晶, 陈宏, 刘江, 等. 改性水葫芦粉对水体中Hg2+的吸附[J]. 环境工程学报, 2017, 11(2): 798-804.
    [11] 丁洋, 靖德兵, 周连碧, 等. 板栗内皮对水溶液中镉的吸附研究[J]. 环境科学学报, 2011, 31(9): 1933-1941.
    [12] ALI I, AL-OTHMAN Z A, ALWARTHAN A, et al. Removal of arsenic species from water by batch and column operations on bagasse fly ash[J]. Environmental Science and Pollution Research, 2014, 21(5): 3218-3229.
    [13] 刘元伟. 沸石负载淀粉对Pb2+、Cu2+和Ni2+的吸附性能[J]. 环境工程学报, 2013, 7(11): 4393-4398.
    [14] 杨敏. 氢氧化钠改性沸石对水中Cu2+的吸附特性研究[J]. 环境污染与防治, 2017, 39(3): 314-318.
    [15] WIBOWO E, ROKHMAT M, SUTISNA E, et al. Reduction of seawater salinity by natural zeolite (clinoptilolite): Adsorption isotherms, thermodynamics and kinetics[J]. Desalination, 2017, 409: 146-156.
    [16] 湛含辉, 罗彦伟. 13X沸石对Ca2+吸附性能的实验研究[J]. 工业水处理, 2008, 28(4): 25-28.
    [17] 秦承欢. 海水中钙离子吸附特征研究[D]. 大连: 大连理工大学, 2009.
    [18] XUE Z, LI Z, MA J, et al. Effective removal of Mg2+ and Ca2+ ions by mesoporous LTA zeolite[J]. Desalination, 2014, 341: 10-18.
    [19] 逸见彰男, 坂上月朗. 人造沸石的制备方法: CN 1239074A[P]. 1999-12-22.
    [20] 环境保护部. 土壤阳离子交换量的测定 三氯化六氨合钴浸提 分光光度法: HJ 889-2017[S]. 北京: 中国环境科学出版社, 2017.
    [21] LIM C K, BAY H H, NEOH C H, et al. Application of zeolite-activated carbon macrocomposite for the adsorption of acid orange 7: Isotherm, kinetic and thermodynamic studies[J]. Environmental Science and Pollution Research, 2013, 20(10): 7243-7255.
    [22] SALEH T A. Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica-multiwall carbon nanotubes[J]. Environmental Science and Pollution Research, 2015, 22(21): 16721-16731.
    [23] 燕存岳, 吴景贵, 康倩. 硫酸改性沸石中主要交换性阳离子动态变化研究[J]. 广东农业科学, 2013 (11): 55-57.
    [24] SEPEHR M N, ZARRABI M, KAZEMIAN H, et al. Removal of hardness agents, calcium and magnesium, by natural and alkaline modified pumice stones in single and binary systems[J]. Applied Surface Science, 2013, 274: 295-305.
    [25] NIBOU D, MEKATEL H, AMOKRANE S, et al. Adsorption of Zn2+ ions onto NaA and NaX zeolites: Kinetic, equilibrium and thermodynamic studies[J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 637-646.
    [26] 叶慧文, 靳是琴, 郑松彦. 红外光谱在铁镁硅酸盐矿物类质同象研究中的应用[J]. 长春地质学院学报, 1982 (2): 65-74.
    [27] 赵世民, 胡岳华, 徐竞, 等. 几种天然铝硅酸盐矿物的成分及结构测定[J]. 分析化学, 2004 (4): 555.
    [28] 窦莎. 粉状和颗粒性13X沸石处理含钙废水的研究[D]. 南昌: 南昌大学, 2013.
    [29] 唐兴萍, 周雄, 张金洋, 等. TiO2/膨润土复合材料对Hg2+的吸附性能研究[J]. 环境科学, 2017, 38(2): 608-615.
    [30] 刘奔逸. 沸石分子筛对钙离子的吸附研究[D]. 苏州: 苏州科技学院, 2010.
    [31] 范春英, 王栋, 陈远超, 等. 4A分子筛与Ca2+在热水中离子交换的实验研究[J]. 工业水处理, 2009, 29(5): 39-42.
    [32] SEIFI L, TORABIAN A, KAZEMIAN H, et al. Kinetic study of BTEX removal using granulated surfactant-modified natural zeolites nanoparticles[J]. Water, Air & Soil Pollution, 2010, 219(1/2/3/4): 443-457.
    [33] SENGIL I A, OZACAR M, TURKMENLER H. Kinetic and isotherm studies of Cu(II) biosorption onto valonia tannin resin[J]. Journal of Hazardous Materials, 2009, 162(2/3): 1046-1052.
    [34] 黄慧, 郝硕硕, 朱家亮, 等. 天然和CPB改性沸石对Hg2+的吸附特征[J]. 环境工程学报, 2013, 7(2): 579-584.
    [35] QU R, WANG M, SONG R, et al. Adsorption kinetics and isotherms of Ag(I) and Hg(II) onto silica gel with functional groups of hydroxyl- or amino-terminated polyamines[J]. Journal of Chemical & Engineering Data, 2011, 56(5): 1982-1990.
  • 加载中
计量
  • 文章访问数:  3318
  • HTML全文浏览数:  3238
  • PDF下载数:  278
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-01-08

废玻璃/铝渣人工沸石对水中Ca2+的吸附

  • 1. 中钢集团鞍山热能研究院有限公司环境工程院士专家工作站,鞍山114044
  • 2. 大连工业大学轻工与化学工程学院,大连116034
基金项目:

国家重点研发计划(2017YFB0603500)

摘要: 利用废玻璃和铝渣制备沸石,进而表征沸石结构特征并研究其对水中Ca2+的吸附性能。采用批式实验考察不同温度下沸石用量、初始pH、振荡频率、接触时间对吸附量的影响,并研究吸附过程热力学、动力学特征。结果表明,吸附量随沸石用量增加而减小、随接触时间延长而增大。初始pH和振荡频率对吸附量影响较显著。温度变化对平衡吸附量影响不大,但升高温度可显著缩短吸附平衡时间。最佳工艺参数为:沸石用量20 g·L-1,初始pH 6~8,振荡频率150 r·min-1,接触时间60 min,此时吸附量约16 mg·g-1。Langmuir等温线最符合沸石吸附水中Ca2+过程,表明该过程是均质单分子层吸附。动力学特征最符合准二级动力学方程,证实该过程主要受离子交换、颗粒外液膜扩散和颗粒内扩散控制。该沸石对水中Ca2+吸附过程是物理吸附和化学吸附并存的自发、吸热、熵增过程。该沸石可较好地去除水中Ca2+,故具有一定软化硬水能力。

English Abstract

参考文献 (35)

目录

/

返回文章
返回