基于硫酸根自由基的高级氧化对头孢氨苄的降解特性

李珂, 刘振鸿, 钱雅洁, 薛罡, 王麒, 李前. 基于硫酸根自由基的高级氧化对头孢氨苄的降解特性[J]. 环境工程学报, 2019, 13(1): 40-48. doi: 10.12030/j.cjee.201808012
引用本文: 李珂, 刘振鸿, 钱雅洁, 薛罡, 王麒, 李前. 基于硫酸根自由基的高级氧化对头孢氨苄的降解特性[J]. 环境工程学报, 2019, 13(1): 40-48. doi: 10.12030/j.cjee.201808012
LI Ke, LIU Zhenhong, QIAN Yajie, XUE Gang, WANG Qi, LI Qian. Cefalexin degradation by advanced oxidation process based on sulfate radical[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 40-48. doi: 10.12030/j.cjee.201808012
Citation: LI Ke, LIU Zhenhong, QIAN Yajie, XUE Gang, WANG Qi, LI Qian. Cefalexin degradation by advanced oxidation process based on sulfate radical[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 40-48. doi: 10.12030/j.cjee.201808012

基于硫酸根自由基的高级氧化对头孢氨苄的降解特性

  • 基金项目:

    国家自然科学基金青年基金资助项目(51708097)

    国家自然科学基金资助项目(51878135)

Cefalexin degradation by advanced oxidation process based on sulfate radical

  • Fund Project:
  • 摘要: 采用高级氧化(advanced oxidation processes, AOPs)技术去除水体中的头孢类抗生素。选取头孢类抗生素中的典型物质头孢氨苄(CFX)为研究对象,探讨了其在UV/过硫酸盐(UV/PS)体系中的降解特性。结果表明,pH=7.0时,UV/PS体系中SO4-·和·OH均对CFX有降解作用,且其与CFX反应的二阶速率常数分别为9.8±0.4×109L?(mol?s)-1、1.05±0.7×1010L?(mol?s)-1。PS投加量的增加可加速CFX的降解和矿化,且酸性条件可促进CFX降解。水体基质Cl-的存在对CFX的降解起到了低浓度抑制高浓度促进的作用,HCO3-和自然有机质(NOM)的存在对CFX的降解稍有抑制。在实际水样中的应用研究表明,UV/PS体系可以有效降解和矿化实际地表水样(SW)和实际废水样(WW)中的CFX,具有较好的应用前景。
  • 加载中
  • [1] ZHU Y G, JOHNSON T A, SU J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Pans, 2013, 110(9): 3435-3440.
    [2] HAO R, ZHAO R, QIU S, et al. Antibiotics crisis in China[J]. Science, 2015, 348(6239): 1100-1101.
    [3] ZHANG Q, JIA A, WAN Y, et al. Occurrences of three classes of antibiotics in a natural river basin: Association with antibiotic-resistant Escherichia coli[J]. Environmental Science & Technology, 2014, 48(24): 14317-14325.
    [4] CHEN J, SUN P, ZHANG Y, et al. Multiple roles of Cu(II) in catalyzing hydrolysis and oxidation of β-Lactam antibiotics[J]. Environmental Science & Technology, 2016, 50(22): 12156-12165.
    [5] ORGANIZATION W H. Antimicrobial resistance: Global report on surveillance[J]. Australasian Medical Journal, 2014, 7(4):238-239.
    [6] 郭洪光, 刘杨, 张永丽. 紫外激活过硫酸钠降解环境雌激素17β-雌二醇分析[J]. 东北大学学报(自然科学版), 2016, 37(6): 880-885.
    [7] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical & Chemical Reference Data, 1988, 17(3): 1027-1284.
    [8] TIM K L, WEI C, NIGEL J D G. The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: Study of reaction mechanisms via dimerization and mineralization[J]. Environmental Science & Technology, 2007, 41(2): 613-619.
    [9] GUAN Y H, MA J, LI X C, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system[J]. Environmental Science & Technology, 2011, 45(21): 9308-9314.
    [10] RACHEL H W, PAUL G T, RICHAED L J, et al. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products[J]. Environmental Science & Technology, 2007, 41(3): 1010-1015.
    [11] GUAN Y H, MA J, REN Y M, et al. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals[J]. Water Research, 2013, 47(14): 5431-5438.
    [12] GAO Y, GAO N, DENG Y, et al. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water[J]. Chemical Engineering Journal, 2012, 195-196: 248-253.
    [13] HORI H, YAMAMOTO A, HAYAKAWA E, et al. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant[J]. Environmental Science & Technology, 2005, 39(7): 2383-2388.
    [14] ANTONIOU M G, CRUZ A A D L, DIONYSIOU D D. Intermediates and reaction pathways from the degradation of microcystin-LR with sulfate radicals[J]. Environmental Science & Technology, 2010, 44(19): 7238-7244.
    [15] KUHN H J, BRASLAVSKY S E, SCHMIDT R. Chemical actinometry[J]. Pure & Applied Chemistry, 1989, 61(2): 187-210.
    [16] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (?OH/?O-) in aqueous solution[J]. Journal of Physical & Chemical Reference Data, 1988, 17(2): 513-886.
    [17] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712.
    [18] ZEPP R G, HOIGNR J, BADER H. Nitrate-induced photooxidation of trace organic chemicals in water[J]. Environmental Science & Technology, 1987, 21(5): 443-450.
    [19] NETA P, MADHAVAN V, ZEMEL H, et al. Rate constants and mechanism of reaction of SO4-·with aromatic compounds[J]. Journal of the American Chemical Society, 1977, 8(14): 163-164.
    [20] O'NEILL P, STEENKEN S, SCHULTE-FROHLINDE D. Formation of radical cations of methoxylated benzenes by reaction with OH radicals, Tl2+, Ag2+, and SO4-· in aqueous solution. Optical and conductometric pulse radiolysis and in situ radiolysis electron spin resonance study[J]. Journal of Physical Chemistry, 1975, 79(25): 2773-2779.
    [21] LIANG C, HUANG C F, MOHANTY N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J]. Chemosphere, 2008, 73(9): 1540-1543.
    [22] ZHANG R, SUN P, BOYER T H, et al. Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2 and UV/PDS[J]. Environmental Science & Technology, 2015, 49(5): 3056-3066.
    [23] TOTH J E, RICKMAN K A, VENTER A R, et al. Reaction kinetics and efficiencies for the hydroxyl and sulfate radical based oxidation of artificial sweeteners in water[J]. Journal of Physical Chemistry A, 2012, 116(40): 9819-9824.
    [24] CHEN J, FANG C, XIA W, et al. Selective transformation of β-lactam antibiotics by peroxymonosulfate: Reaction kinetics and nonradical mechanism[J]. Environmental Science & Technology, 2018, 52(3): 1461-1470.
    [25] HOUSE D A. Kinetics and mechanism of oxidations by peroxydisulfate[J]. Chemical Reviews, 1961, 62(3): 185-203.
    [26] 郭洪光, 高乃云, 张永丽, 等. 热激活过硫酸盐降解水中典型氟喹诺酮抗生素分析[J]. 四川大学学报(工程科学版), 2015, 47(2): 191-197.
    [27] LIANG C J, BRUELL C J, MARLEY M C, et al. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries[J]. Journal of Soil Contamination, 2003, 12(2): 207-228.
    [28] LIANG C, WANG Z S, BRUELL C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere, 2007, 66(1): 106-113.
    [29] WANG Z, YUAN R, GUO Y, et al. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent: Kinetic analysis[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 1083-1087.
    [30] QIAN Y, GUO X, ZHANG Y, et al. Perfluorooctanoic acid degradation using UV-persulfate process: Modeling of the degradation and chlorate formation[J]. Environmental Science & Technology, 2016, 50(2): 772-781.
  • 加载中
计量
  • 文章访问数:  3065
  • HTML全文浏览数:  2985
  • PDF下载数:  263
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-01-08

基于硫酸根自由基的高级氧化对头孢氨苄的降解特性

  • 1. 东华大学环境科学与工程学院,上海 201620
基金项目:

国家自然科学基金青年基金资助项目(51708097)

国家自然科学基金资助项目(51878135)

摘要: 采用高级氧化(advanced oxidation processes, AOPs)技术去除水体中的头孢类抗生素。选取头孢类抗生素中的典型物质头孢氨苄(CFX)为研究对象,探讨了其在UV/过硫酸盐(UV/PS)体系中的降解特性。结果表明,pH=7.0时,UV/PS体系中SO4-·和·OH均对CFX有降解作用,且其与CFX反应的二阶速率常数分别为9.8±0.4×109L?(mol?s)-1、1.05±0.7×1010L?(mol?s)-1。PS投加量的增加可加速CFX的降解和矿化,且酸性条件可促进CFX降解。水体基质Cl-的存在对CFX的降解起到了低浓度抑制高浓度促进的作用,HCO3-和自然有机质(NOM)的存在对CFX的降解稍有抑制。在实际水样中的应用研究表明,UV/PS体系可以有效降解和矿化实际地表水样(SW)和实际废水样(WW)中的CFX,具有较好的应用前景。

English Abstract

参考文献 (30)

目录

/

返回文章
返回