Fu Lele, Li Fang, Wu Liang, Wang Ge. Fouling mechanism in advanced treatment of dyeing wastewater by ultrafiltration membrane[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1313-1318.
Citation: Fu Lele, Li Fang, Wu Liang, Wang Ge. Fouling mechanism in advanced treatment of dyeing wastewater by ultrafiltration membrane[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1313-1318.

Fouling mechanism in advanced treatment of dyeing wastewater by ultrafiltration membrane

  • Received Date: 09/05/2012
    Accepted Date: 13/02/2012
    Available Online: 09/04/2013
    Fund Project:
  • The fouling mechanism and impact factors of ultrafiltration (UF) membrane with various membrane materials and types for the dyeing wastewater secondary effluent were analyzed. The membrane materials were analyzed with the ftir spectrum (FTIR) and the contact angles of virgin and fouled membranes with polyethersulfone(PES), polysulfone(PSF) and polyetherimide(PEI) were compared. The effects of molecular weight cut off (MWCO) on the membrane flux were investigated in the UF experiment. The membrane fouling mechanism was discussed primarily by fitting to the linearized Herman’s blocking models. The results show that the hydrophilic group on the surface of the membrane material is in direct proportion with the size of the initial flux. COD concentration of permeate decreases with the decreasing of MWCO of UF membranes. Among the three membranes with different materials, the separation efficiency of PES is the highest with effluent COD 47.81 mg/L. The membrane flux of PEI is the highest which reaches 50 L/(m2·h). Cake filtration model is more adequate to represent 1 000 and 10 000 UF membrane for the relation of flux-time, whereas the completely blocking model describes is better for 100 000 UF membrane. It is found that 1 000 (PES) is more suitable for advanced treatment of this kind of dyeing wastewater.
  • [1] Robinson T., McMullan G., Marchant R., et al. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 2001, 77(3):247-255

    Google Scholar Pub Med

    [2] Allegre C., Moulin P., Maisseu M., et al. Treatment and reuse of reactive dyeing effluents. Journal of Membrane Science, 2006,269(1-2):15-34

    Google Scholar Pub Med

    [3] 张慧, 朱淑飞, 卢学仁. 膜技术在水处理中的应用与发展. 水处理技术,2002,28(5):256-259 Zhang H., Zhu S. F., Lu X. R. Application and development of membrane separation techniques in the field of water treatment. Technology of Water Treatment,2002,28(5):256-259(in Chinese)

    Google Scholar Pub Med

    [4] 许亚夫, 邹大江, 熊俊. 滤膜材料及微滤技术的应用. 中国组织工程研究与临床康复,2011,15(16):2949-2952 Xu Y. F., Zou D. J., Xiong J. Microfiltration membrane materials and techniques. Journal of Clinical Rehabilitative Tissue Engineering Research,2011,5(16):2949-2952(in Chinese)

    Google Scholar Pub Med

    [5] Lou Yunpeng, Tian Qing, Xin Yiying, et al. Characteristics of membrane fouling of dye wastewater treatment by combined MBR. Proceeding, 2011 International Conference on Energy and Environmental Science (ICEES), Singapore, 2011

    Google Scholar Pub Med

    [6] 丁凤平. 超滤技术在碱性果胶酶浓缩工艺中的应用. 膜科学与技术,2001,21(6):55-59 Ding F. P.Concentration of alkaline pectic lyase with ultrafiltration process. Membrane Science and Technology,2001,21(6):55-59(in Chinese)

    Google Scholar Pub Med

    [7] Cai B. X. Study of membrane separation processes of a betaine-like medicinal solution. Desalination,2006,191(1-3):432-437

    Google Scholar Pub Med

    [8] Boussu K., Vandecasteele C., Bruggen B. V., et al. Relation between membrane characteristics and performance in nanofiltration. Journal of Membrane Science,2008,310(1-2):51-65

    Google Scholar Pub Med

    [9] Menniti A., Morgenroth E., Eberhard M. The influence of aeration intensity on predation and EPS production in membrane bioreactors. Water Research,2010,44(8):2541-2553

    Google Scholar Pub Med

    [10] Vela M. C. V., Blanco S. A., Garcia L. J., et al. Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Separation and Purification Technology,2008,62(3):489-498

    Google Scholar Pub Med

    [11] Hermia J. Constant pressure blocking filtration laws-application to power-law non-newtonian fluids. Trans. Icheme., 1982,60(3):183-187

    Google Scholar Pub Med

    [12] Arsuaga J. M., Lopez-Munoz M. J., et al. Correlation between retention and adsorption of phenolic compounds in nanofiltration membranes. Desalination,2010,250(2):829-832

    Google Scholar Pub Med

    [13] 陈桂娥, 卢琼, 周颖, 等. TiO2动态改性膜应用于MBR的研究. 膜科学与技术,2009,29(6):32-35 Chen G.. E., Lu Q.,Zhou Y., et al. Study on TiO2 dynamically modified membrane used in membrane bioreactor. Membrane Science and Technology,2009,29(6):32-35(in Chinese)

    Google Scholar Pub Med

    [14] 林汉阳, 武春瑞, 吕晓龙. 聚偏氟乙烯膜的超疏水改性研究. 膜科学与技术,2010,30(2):39-44 Lin H. Y., Wu C. R., Lü X. L. Modification of the super-hydrophobic polyvinylidene fluoride membrane. Membrane Science and Technology, 2010,30(2):39-44(in Chinese)

    Google Scholar Pub Med

    [15] 荣国斌, 朱士正. 有机化合物的结构解析.上海:华东理工大学出版社, 2002.296-299

    Google Scholar Pub Med

    [16] 马琳, 秦国彤. 膜污染的机理和数学模型研究进展. 水处理技术, 2007,33(6):1-3 Ma L., Qin G. T. Mechanism and mathematical models of membrane fouling. Technology of Water Treatment, 2007,33(6):1-3(in Chinese)

    Google Scholar Pub Med

    [17] 王新威, 胡祖明, 刘兆峰, 等. 聚醚酰亚胺的性能、聚合与纺织研究. 材料导报,2007,21(1):408-412 Wang X., W., Hu Z. M., Liu Z. F., et al. Performance, polymerization and spinning of polyetherimide. Materials Review, 2007,21(1):408-412(in Chinese)

    Google Scholar Pub Med

    [18] 于奕峰, 顾春雷, 王广玉, 等. 有机超滤膜处理退浆废水实验研究. 膜科学与技术,2008,28(1):72-76 Yu Y., F., Gu C. L., Wang G. Y., et al. Treatment of desizing wastewater by ultrafiltration technology. Membrane Science and Technology, 2008,28(1):72-76(in Chinese)

    Google Scholar Pub Med

    [19] Idris A. I., Ahmed F., Kormin R. M., et al. Preparation of PES ultrafiltration membrane using novel modified microwave casting solution technique. Journal of Applied Sciences,2010,10(21):2733-2736

    Google Scholar Pub Med

    [20] 陈亚, 钱欣. 半互穿网络法亲水改性超滤膜. 膜科学与技术, 2010,30(6):14-19 Chen Y., Qian X. Hydrophilic modification of polysulfone ultrafiltration membranes by semi-IPN method. Membrane Science and Technology,2010,30(6):14-19(in Chinese)

    Google Scholar Pub Med

    [21] 金鹏康, 吴鑫, 王晓昌. 不同截留分子量超滤膜污染过程分析. 西安建筑科技大学学报,2010,42(5):712-715 Jin P. K., Wu X., Wang X. C. Study on membrane fouling of ultrafiltration membrane with different molecular weight cut-off. Journal of Xi’an University of Architecture & Technology,2010,42(5):712-715(in Chinese)

    Google Scholar Pub Med

    [22] Xie Y. J., Yu H. Y., Wang S. Y., et al. Improvement of the antifouling characteristics in a bioreactor of polypropylene microporous membrane by the adsorption of Tween 20. Journal of Environmental Sciences, 2007,19(12):1461-1465

    Google Scholar Pub Med

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionDOWNLOAD: 3.0 %DOWNLOAD: 3.0 %FULLTEXT: 85.8 %FULLTEXT: 85.8 %META: 11.3 %META: 11.3 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 81.9 %其他: 81.9 %Ashburn: 1.5 %Ashburn: 1.5 %Beijing: 3.9 %Beijing: 3.9 %Hangzhou: 0.3 %Hangzhou: 0.3 %Mountain View: 0.3 %Mountain View: 0.3 %Newark: 0.3 %Newark: 0.3 %Shijiazhuang: 0.9 %Shijiazhuang: 0.9 %Wuxi: 3.6 %Wuxi: 3.6 %Xingfeng: 0.6 %Xingfeng: 0.6 %XX: 5.0 %XX: 5.0 %内网IP: 0.3 %内网IP: 0.3 %北京: 0.3 %北京: 0.3 %济南: 0.6 %济南: 0.6 %深圳: 0.3 %深圳: 0.3 %漯河: 0.3 %漯河: 0.3 %其他AshburnBeijingHangzhouMountain ViewNewarkShijiazhuangWuxiXingfengXX内网IP北京济南深圳漯河Highcharts.com
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2097) PDF downloads(1297) Cited by(0)

Access History

Fouling mechanism in advanced treatment of dyeing wastewater by ultrafiltration membrane

Fund Project:

Abstract: The fouling mechanism and impact factors of ultrafiltration (UF) membrane with various membrane materials and types for the dyeing wastewater secondary effluent were analyzed. The membrane materials were analyzed with the ftir spectrum (FTIR) and the contact angles of virgin and fouled membranes with polyethersulfone(PES), polysulfone(PSF) and polyetherimide(PEI) were compared. The effects of molecular weight cut off (MWCO) on the membrane flux were investigated in the UF experiment. The membrane fouling mechanism was discussed primarily by fitting to the linearized Herman’s blocking models. The results show that the hydrophilic group on the surface of the membrane material is in direct proportion with the size of the initial flux. COD concentration of permeate decreases with the decreasing of MWCO of UF membranes. Among the three membranes with different materials, the separation efficiency of PES is the highest with effluent COD 47.81 mg/L. The membrane flux of PEI is the highest which reaches 50 L/(m2·h). Cake filtration model is more adequate to represent 1 000 and 10 000 UF membrane for the relation of flux-time, whereas the completely blocking model describes is better for 100 000 UF membrane. It is found that 1 000 (PES) is more suitable for advanced treatment of this kind of dyeing wastewater.

Reference (22)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint