Hao Xiaodi, Wang Jimin, Cao Xingkun, Hu Yuansheng. Analyses of energy conversion potential of lignocellulose contained in excess sludge[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 1106-1114.
Citation: Hao Xiaodi, Wang Jimin, Cao Xingkun, Hu Yuansheng. Analyses of energy conversion potential of lignocellulose contained in excess sludge[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 1106-1114.

Analyses of energy conversion potential of lignocellulose contained in excess sludge

  • Received Date: 23/10/2012
    Accepted Date: 12/09/2012
    Available Online: 18/03/2013
    Fund Project:
  • There are a lot of lignocellulose in excess sludge. They hinder sludge reduction, and energy contained in them is easily lost. For this reason, it is essential to develop some technical measures for energy conversion and then for sludge reduction. Starting from the three basic chemical structures of lignocellulose ——hemicellulose、cellulose and lignin,the article describes both same and different characteristics on their structures, and illustrates the stable structure of lignocellulose. Next, biodegradability of hemicellulose, cellulose and lignin as well as lignocellulose are reviewed to judge the bottleneck of lignocellulose converted into energy. Finally, a technical pathway of lignocellulose converted into energy is raised on the basis of summarizing plants-lignocellulose converted into energy.
  • [1] 郝晓地. 可持续污水—废物处理技术. 北京:中国建筑工业出版社, 2006

    Google Scholar Pub Med

    [2] 郝晓地,王啟林,曹亚莉. 剩余污泥减量技术评价及未来潜在技术展望. 中国给水排水, 2008, 24(12):1-5 Hao X. D., Wang Q. L., Cao Y. L. Evaluation of excess sludge reduction technology and prospect of future potential technology. China Water & Wastewater, 2008, 24(12):1-5(in Chinese)

    Google Scholar Pub Med

    [3] 郝晓地,蔡正清,甘一萍. 剩余污泥预处理技术概览. 环境科学学报, 2011, 31(1):1-12 Hao X. D., Cai Z. Q., Gan Y. P. Review of pretreatment technologies for excess sludge. Acta Scientiae Circumstantiae, 2011, 31(1):1-12(in Chinese)

    Google Scholar Pub Med

    [4] Waksman S. A., Stevens K. R. A system of proximate chemical analysis of plant materials. Industrial and Engineering Chemistry, 1930, 2(2):167-173

    Google Scholar Pub Med

    [5] Nguyen T. P., Hankins N. P., Hilal N. Effect of chemical composition on the flocculation dynamics of latex-based synthetic activated sludge. Journal of Hazardous Materials, 2007, 139(2):265-274

    Google Scholar Pub Med

    [6] Cao Y. C., Pawlowski A. Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renewable and Sustainable Energy Reviews, 2012, 16(3):1657-1665

    Google Scholar Pub Med

    [7] Champagne P. Feasibility of producing bio-ethanol from waste residues: A Canadian perspective Feasibility of producing bio-ethanol from waste residues in Canada. Resources, Conservation and Recycling, 2007, 50(3): 211-230

    Google Scholar Pub Med

    [8] Piterina A. V. ,Bartlett J. ,Pembroke T. J. Morphological characterisation of ATAD thermophilic sludge; sludge ecology and settleability. Water Research, 2011, 45(11):3427-3438

    Google Scholar Pub Med

    [9] Parnaudeau V., Dignac M. F. The organic matter composition of various wastewater sludges and their neutral detergent fractions as revealed by pyrolysis-GC/MS. Journal of Analytical and Applied Pyrolysis, 2007, 78(1):140-152

    Google Scholar Pub Med

    [10] 周立祥,胡霭堂. 厌氧消化污泥化学组成及其环境化学性质. 植物营养与肥料学报, 1997, 3(2):176-181 Zhou L. X., Hu A. T. The composition and characteristic of anaerobically digested sludge. Plant Nutrition and Fertilizer Science, 1997, 3(2):176-181(in Chinese)

    Google Scholar Pub Med

    [11] 曲音波,等. 木质纤维素降解酶与生物炼制. 北京: 化学工业出版社, 2011

    Google Scholar Pub Med

    [12] Hendriks A. T. W. M., Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 2009, 100(1):10-18

    Google Scholar Pub Med

    [13] 宋永民. 汽爆玉米秸秆高温固态阶梯厌氧消化的研究. 济南: 山东师范大学硕士学位论文, 2008 Song Y. M. The studies on anaerobic digestion of steam exploded corn stover in high-temperature solid-state ladder. Jinan: Master Dissertation of Shandong Normal University, 2008(in Chinese)

    Google Scholar Pub Med

    [14] 王士强,顾春梅,赵海红. 木质纤维素生物降解机理及其降解菌筛选方法研究进展. 华北农学报, 2010, 25(Z1):313-317 Wang S. Q., Gu C. M., Zhao M. H. The research progress on the mechanisms of lignocellulose biological degrading and the screening method on the degrading bacteria. Acta Agriculturae Boreali-Sinica, 2010, 25(S1):313-317(in Chinese)

    Google Scholar Pub Med

    [15] 孙付保,毛忠贵,张建华,等. 植物/微生物源活性蛋白协同纤维素酶水解木质纤维素的研究进展. 现代化工, 2010, 30(11):23-28 Sun F. B., Mao Z. G., Zhang J. H., et al. Progress in enzymatic hydrolysis of lignocellulose with cellulase in synergism with plant or/and microbe originated active protein. Modern Chemical Industry, 2010, 30(11):23-28(in Chinese)

    Google Scholar Pub Med

    [16] 蒋挺大. 木质素. 北京: 化学工业出版社, 2001

    Google Scholar Pub Med

    [17] 林鹿,詹怀宇. 制浆漂白生物技术. 北京: 中国轻工业出版社, 2002

    Google Scholar Pub Med

    [18] 康广博. 超声波技术应用于植物木质纤维素预处理及酶水解的研究. 长沙: 湖南大学硕士学位论文, 2008 Kang G. B. The research on application of ultrasound technology in pretreatment and enzymatic hydrolysis of lignocellulose. Changsha: Master Dissertation of Hunan University, 2008(in Chinese)

    Google Scholar Pub Med

    [19] Mohammad J. T., Keikhosro K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A Review. International Journal of Molecular Sciences, 2008, 9(9):1621-1651

    Google Scholar Pub Med

    [20] 易守连. 农作物秸秆木质纤维素组分分离及高效糖化工艺研究. 合肥: 合肥工业大学硕士学位论文, 2010 Yi S. L. Separation and efficient saccharification of lignocellulose from crop straw. Hefei: Master Dissertation of Hefei University of Technology, 2010(in Chinese)

    Google Scholar Pub Med

    [21] Iiyama K., Lam T. B. T., Stone B. A. Covalent cross-links in the cell-wall. Plant Physiology, 1994, 104(2):315-320

    Google Scholar Pub Med

    [22] 王修胜. 木质纤维素生物质预处理与水解过程的关键技术研究. 上海: 华东理工大学硕士学位论文, 2010 Wang X. S. Studies on pretreatment and enzymatic hydrolysis of lignocellulosic biomass. Shanghai: Master Dissertation of East China University of Science and Technology, 2010(in Chinese)

    Google Scholar Pub Med

    [23] Yang B., Willies D. M.,Wyman C. E. Changes in the enzymatic hydrolysis rate of avicel cellulose with conversion. Biotechnology and Bioengineering, 2006, 94(6):1122-1128

    Google Scholar Pub Med

    [24] Yang B., Wyman C. E. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnology and Bioengineering, 2006, 94(4):611-617

    Google Scholar Pub Med

    [25] Dekker R. F. Kinetic, inhibition, and stability properties of a commercial β-D-glucosidase (cellobiase) preparation from aspergillus niger and its suitability in the hydrolysis of lignocellulose. Biotechnology and Bioengineering, 1986, 28(9):1438-1442

    Google Scholar Pub Med

    [26] Hong J., Ladisch M. R., Cong C. S., et al. Combined product and substrate inhibition equation for cellobiase. Biotechnology and Bioengineering, 1981, 23(12):2779-2788

    Google Scholar Pub Med

    [27] Alfani F., Cantarella L., Gallifuoco A., et al. Membrane reactors for the investigation of product inhibition on enzyme activity. Journal of Membrane Science, 1990, 52(3):339-350

    Google Scholar Pub Med

    [28] Stenberg K., Bollok M., Reczey K., et al. Effect of substrate and cellulase concentration on simultaneous saccharification and fermentation of steam-pretreated softwood for ethanol production. Biotechnology and Bioengineering, 2000, 68(2):204-210

    Google Scholar Pub Med

    [29] Alfani F., Gallifuoco A., Saporosi A., et al. Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. Journal of Industrial Microbiology and Biotechnology, 2000, 25(4): 184-192

    Google Scholar Pub Med

    [30] Eklund R.,Zacchi G. Simultaneous saccharification and fermentation of steam-pretreated willow. Enzyme and Microbial Technology, 1995, 17(3): 255-259

    Google Scholar Pub Med

    [31] Lynd L. R., van Zyl W. H., McBride J.E., et al. Consolidated bioprocessing of cellulosic biomass: An update. Current Opinion in Biotechnology, 2005, 16(5): 557-583

    Google Scholar Pub Med

    [32] Demain A. L., Newcomb M.,Wu J. H. D. Cellulase, clostridia, and ethanol. Microbiology and Molecular Biology Reviews, 2005, 69(1): 124-154

    Google Scholar Pub Med

    [33] 李江,谢天文,刘晓风. 木质纤维素生产燃料乙醇的糖化发酵工艺研究进展. 化工进展, 2011, 30(2):284-291 Li J., Xie T. W., Liu X. F. Technologies of saccharification and fermentation for fuel ethanol from lignocellulosic materials. Chemical Industry and Engineering Progress, 2011, 30(2):284-291(in Chinese)

    Google Scholar Pub Med

    [34] 王爱杰,曹广丽,徐诚蛟,等. 木质纤维素生物转化产氢技术现状与发展趋势. 生物工程学报, 2010, 26(7):931-941 Wang A. J., Cao G. L., Xu C. J., et al. Progress and technology development on hydrogen production through bioconversion of lignocellulosic biomass. Chinese Journal of Biotechnology, 2010, 26(7):931-941(in Chinese)

    Google Scholar Pub Med

    [35] Huang R. L., Su R. X., Qi W., et al. Bioconversion of lignocellulose into bioethanol: Process intensification and mechanism research. BioEnergy Research, 2011, 4(4): 225-245

    Google Scholar Pub Med

    [36] Leontina G., álvaro L., Julio P., et al. Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the β-glucosidase gene (BGL1) from Saccharomycopsis fibuligera. Bioresource Technology, 2011, 102(8): 5229-5236

    Google Scholar Pub Med

    [37] Caroline W., Nicholas D. G., Nancy B., et al. Expression of a library of fungal β-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain. Applied Microbiology and Biotechnology, 2012,95(3):647-659

    Google Scholar Pub Med

    [38] Abhishek W., Preeti M., Anjali C., et al. Optimization of cellulase-free xylanase production by alkalophilic Cellulosimicrobium sp. CKMX1 in solid-state fermentation of apple pomace using central composite design and response surface methodology. Annals of Microbiology, 2012,63(1):187-198

    Google Scholar Pub Med

    [39] Vishnu M., Mala R. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 2012, 38(4): 522-550

    Google Scholar Pub Med

    [40] Parawira W., Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review. Critical Reviews in Biotechnology, 2011, 31(1): 20-31

    Google Scholar Pub Med

    [41] Kaparaju P., Serrano M., Thomsen A. B., et al. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology, 2009, 100(9): 2562-2568

    Google Scholar Pub Med

    [42] 郝晓地,赵义,仇付国,等. 从微观机理认识污水处理厂的节能减排. 中国给水排水, 2008, 24(4):89-94 Hao X D., Zhao Y., Qiu F G., et al. Understanding energy saving and emission reduction in WWTPs from microcosmic mechanism. China Water & Wastewater, 2008, 24(4):90-94(in Chinese)

    Google Scholar Pub Med

    [43] Ding S. Y., Himmel M. E. The maize primary cell wall microfibril:A new model derived from direct visualization. J. Agric. Food Chem., 2006, 54(3): 597-606

    Google Scholar Pub Med

    [44] Wyman C. E., Dale B. E., Elander R. T., et al. Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 2005, 96(18): 1959-1966

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2520) PDF downloads(1314) Cited by(0)

Access History

Analyses of energy conversion potential of lignocellulose contained in excess sludge

Fund Project:

Abstract: There are a lot of lignocellulose in excess sludge. They hinder sludge reduction, and energy contained in them is easily lost. For this reason, it is essential to develop some technical measures for energy conversion and then for sludge reduction. Starting from the three basic chemical structures of lignocellulose ——hemicellulose、cellulose and lignin,the article describes both same and different characteristics on their structures, and illustrates the stable structure of lignocellulose. Next, biodegradability of hemicellulose, cellulose and lignin as well as lignocellulose are reviewed to judge the bottleneck of lignocellulose converted into energy. Finally, a technical pathway of lignocellulose converted into energy is raised on the basis of summarizing plants-lignocellulose converted into energy.

Reference (44)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint