[1]
|
WANG L W, O'CONNOR D, RINKLEBE J, et al. Biochar aging: Mechanisms, physicochemical changes, assessment, and implications for field applications [J]. Environmental Science & Technology, 2020, 54(23): 14797-14814.
Google Scholar
Pub Med
|
[2]
|
LEHMANN J, COWIE A, MASIELLO C, et al. Biochar in climate change mitigation [J]. Nature Geoscience, 2021, 14(12): 883-892. doi: 10.1038/s41561-021-00852-8
CrossRef Google Scholar
Pub Med
|
[3]
|
TOMCZYK A, SOKOŁOWSKA Z, BOGUTA P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects [J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(1): 191-215. doi: 10.1007/s11157-020-09523-3
CrossRef Google Scholar
Pub Med
|
[4]
|
HAGEMANN N, JOSEPH S, SCHMIDT H P, et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility [J]. Nature Communications, 2017, 8: 1089. doi: 10.1038/s41467-017-01123-0
CrossRef Google Scholar
Pub Med
|
[5]
|
IPPOLITO J A, CUI L Q, KAMMANN C, et al. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review [J]. Biochar, 2020, 2(4): 421-438. doi: 10.1007/s42773-020-00067-x
CrossRef Google Scholar
Pub Med
|
[6]
|
SONG F H, LI T T, SHI Q, et al. Novel insights into the molecular-level mechanism linking the chemical diversity and copper binding heterogeneity of biochar-derived dissolved black carbon and dissolved organic matter [J]. Environmental Science & Technology, 2021, 55(17): 11624-11636.
Google Scholar
Pub Med
|
[7]
|
WAGNER S, JAFFÉ R, STUBBINS A. Dissolved black carbon in aquatic ecosystems [J]. Limnology and Oceanography Letters, 2018, 3(3): 168-185. doi: 10.1002/lol2.10076
CrossRef Google Scholar
Pub Med
|
[8]
|
彭红波, 杨东, 高鹏, 等. 生物炭中溶解性炭黑的释放及环境效应 [J]. 材料导报, 2020, 34(11): 11029-11034. doi: 10.11896/cldb.19050149
PENG H B, YANG D, GAO P, et al. Releasing and the environmental implications of dissolved black carbon from biochars [J]. Materials Reports, 2020, 34(11): 11029-11034(in Chinese). doi: 10.11896/cldb.19050149
CrossRef Google Scholar
Pub Med
|
[9]
|
魏晨辉, 付翯云, 瞿晓磊, 等. 溶解态黑碳的环境过程研究 [J]. 化学进展, 2017, 29(9): 1042-1052. doi: 10.7536/PC170444
WEI C H, FU Y F, QU X L, et al. Environmental processes of dissolved black carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052(in Chinese). doi: 10.7536/PC170444
CrossRef Google Scholar
Pub Med
|
[10]
|
ZHOU Z C, CHEN B N, QU X L, et al. Dissolved black carbon as an efficient sensitizer in the photochemical transformation of 17β-estradiol in aqueous solution [J]. Environmental Science & Technology, 2018, 52(18): 10391-10399.
Google Scholar
Pub Med
|
[11]
|
FU H Y, WEI C H, QU X L, et al. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications [J]. Environmental Pollution, 2018, 232: 402-410. doi: 10.1016/j.envpol.2017.09.053
CrossRef Google Scholar
Pub Med
|
[12]
|
ZHANG P, SHAO Y F, XU X J, et al. Phototransformation of biochar-derived dissolved organic matter and the effects on photodegradation of imidacloprid in aqueous solution under ultraviolet light [J]. Science of the Total Environment, 2020, 724: 137913. doi: 10.1016/j.scitotenv.2020.137913
CrossRef Google Scholar
Pub Med
|
[13]
|
LI S, HU J Y. Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms [J]. Journal of Hazardous Materials, 2016, 318: 134-144. doi: 10.1016/j.jhazmat.2016.05.100
CrossRef Google Scholar
Pub Med
|
[14]
|
BERTILSSON S, TRANVIK L J. Photochemical transformation of dissolved organic matter in lakes [J]. Limnology and Oceanography, 2000, 45(4): 753-762. doi: 10.4319/lo.2000.45.4.0753
CrossRef Google Scholar
Pub Med
|
[15]
|
WAN D, WANG J, DIONYSIOU D D, et al. Photogeneration of reactive species from biochar-derived dissolved black carbon for the degradation of amine and phenolic pollutants [J]. Environmental Science & Technology, 2021, 55(13): 8866-8876.
Google Scholar
Pub Med
|
[16]
|
FANG G D, LIU C, WANG Y J, et al. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation [J]. Applied Catalysis B:Environmental, 2017, 214: 34-45. doi: 10.1016/j.apcatb.2017.05.036
CrossRef Google Scholar
Pub Med
|
[17]
|
王佳钰, 王中钰, 陈景文, 等. 环境新污染物治理与化学品环境风险防控的系统工程 [J]. 科学通报, 2022, 67(3): 267-277. doi: 10.1360/TB-2021-0422
WANG J Y, WANG Z Y, CHEN J W, et al. Environmental systems engineering consideration on treatment of emerging pollutants and risk prevention and control of chemicals [J]. Chinese Science Bulletin, 2022, 67(3): 267-277(in Chinese). doi: 10.1360/TB-2021-0422
CrossRef Google Scholar
Pub Med
|
[18]
|
van BOECKEL T P, PIRES J, SILVESTER R, et al. Global trends in antimicrobial resistance in animals in low- and middle-income countries [J]. Science, 2019, 365(6459): eaaw1944. doi: 10.1126/science.aaw1944
CrossRef Google Scholar
Pub Med
|
[19]
|
XU L Y, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review [J]. Science of the Total Environment, 2021, 753: 141975. doi: 10.1016/j.scitotenv.2020.141975
CrossRef Google Scholar
Pub Med
|
[20]
|
WANG J H, LU J, WU J, et al. Proliferation of antibiotic resistance genes in coastal recirculating mariculture system [J]. Environmental Pollution, 2019, 248: 462-470. doi: 10.1016/j.envpol.2019.02.062
CrossRef Google Scholar
Pub Med
|
[21]
|
SHAO S C, WU X W. Microbial degradation of tetracycline in the aquatic environment: A review [J]. Critical Reviews in Biotechnology, 2020, 40(7): 1010-1018. doi: 10.1080/07388551.2020.1805585
CrossRef Google Scholar
Pub Med
|
[22]
|
侯力睿, 傅榆涵, 赵冲, 等. 兽药抗生素对生态环境的混合毒性研究进展 [J]. 环境化学, 2021, 40(1): 55-64. doi: 10.7524/j.issn.0254-6108.2020052502
HOU L R, FU Y H, ZHAO C, et al. Advance on combined toxicity of veterinary antibiotics on ecological environments [J]. Environmental Chemistry, 2021, 40(1): 55-64(in Chinese). doi: 10.7524/j.issn.0254-6108.2020052502
CrossRef Google Scholar
Pub Med
|
[23]
|
廖洋, 鲁金凤, 曹轶群, 等. 光催化降解对抗生素藻类毒性效应影响研究进展 [J]. 环境化学, 2021, 40(1): 111-120. doi: 10.7524/j.issn.0254-6108.2019122404
LIAO Y, LU J F, CAO Y Q, et al. Research progress on the effects of photocatalytic degradation on the algae toxicity of antibiotics [J]. Environmental Chemistry, 2021, 40(1): 111-120(in Chinese). doi: 10.7524/j.issn.0254-6108.2019122404
CrossRef Google Scholar
Pub Med
|
[24]
|
ESCOBAR-HUERFANO F, GÓMEZ-OLIVÁN L M, LUJA-MONDRAGÓN M, et al. Embryotoxic and teratogenic profile of tretracycline at environmentally relevant concentrations on Cyprinus carpio [J]. Chemosphere, 2020, 240: 124969. doi: 10.1016/j.chemosphere.2019.124969
CrossRef Google Scholar
Pub Med
|
[25]
|
徐冰洁, 罗义, 周启星, 等. 抗生素抗性基因在环境中的来源、传播扩散及生态风险 [J]. 环境化学, 2010, 29(2): 169-178.
XU B J, LUO Y, ZHOU Q X, et al. Sources, dissemination, and ecological risks of antibiotic resistances genes(args) in the environment [J]. Environmental Chemistry, 2010, 29(2): 169-178(in Chinese).
Google Scholar
Pub Med
|
[26]
|
ZHU Y G, ZHAO Y, LI B, et al. Continental-scale pollution of estuaries with antibiotic resistance genes"> [J]. Nature Microbiology, 2017, 2: 16270. doi: 10.1038/nmicrobiol.2016.270
CrossRef Google Scholar
Pub Med
|
[27]
|
ZHANG X, LI J, FAN W Y, et al. Enhanced photodegradation of extracellular antibiotic resistance genes by dissolved organic matter photosensitization [J]. Environmental Science & Technology, 2019, 53(18): 10732-10740.
Google Scholar
Pub Med
|
[28]
|
SONG C, ZHANG K X, WANG X J, et al. Effects of natural organic matter on the photolysis of tetracycline in aquatic environment: Kinetics and mechanism [J]. Chemosphere, 2021, 263: 128338. doi: 10.1016/j.chemosphere.2020.128338
CrossRef Google Scholar
Pub Med
|
[29]
|
ZHENG H, WANG Z Y, DENG X, et al. Characteristics and nutrient values of biochars produced from giant reed at different temperatures [J]. Bioresource Technology, 2013, 130: 463-471. doi: 10.1016/j.biortech.2012.12.044
CrossRef Google Scholar
Pub Med
|
[30]
|
HAN L, NIE X, WEI J, et al. Effects of feedstock biopolymer compositions on the physiochemical characteristics of dissolved black carbon from lignocellulose-based biochar [J]. Science of the Total Environment, 2021, 751: 141491. doi: 10.1016/j.scitotenv.2020.141491
CrossRef Google Scholar
Pub Med
|
[31]
|
WANG Y T, XIN Z B, PENG F, et al. Influence of pyrolysis temperature on characteristics and nitrobenzene adsorption capability of biochar derived from reed and giant reed [J]. Science of Advanced Materials, 2019, 11(11): 1523-1530. doi: 10.1166/sam.2019.3463
CrossRef Google Scholar
Pub Med
|
[32]
|
ZHANG J X, LUO J, TONG D M, et al. The dependence of pyrolysis behavior on the crystal state of cellulose [J]. Carbohydrate Polymers, 2010, 79(1): 164-169. doi: 10.1016/j.carbpol.2009.07.038
CrossRef Google Scholar
Pub Med
|
[33]
|
CAO J, JIANG J. Reducing capacities in continuously released low molecular weight fractions from bulk humic acids [J]. Journal of Environmental Management, 2019, 244: 172-179. doi: 10.1016/j.jenvman.2019.05.014
CrossRef Google Scholar
Pub Med
|
[34]
|
CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures [J]. Environmental Science & Technology, 2008, 42(14): 5137-5143.
Google Scholar
Pub Med
|
[35]
|
XIAO X, CHEN B L, ZHU L Z. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures [J]. Environmental Science & Technology, 2014, 48(6): 3411-3419.
Google Scholar
Pub Med
|
[36]
|
朱静, 张朝晖. 近海CDOM光反应变化及SPM对其影响的研究 [J]. 环境科学与技术, 2019, 42(10): 9-13. doi: 10.19672/j.cnki.1003-6504.2019.10.002
ZHU J, ZHANG Z H. Photoreaction changes of CDOM in offshore and study on effects of SPM on photoreaction [J]. Environmental Science & Technology, 2019, 42(10): 9-13(in Chinese). doi: 10.19672/j.cnki.1003-6504.2019.10.002
CrossRef Google Scholar
Pub Med
|
[37]
|
BIANCO A, MINELLA M, de LAURENTIIS E, et al. Photochemical generation of photoactive compounds with fulvic-like and humic-like fluorescence in aqueous solution [J]. Chemosphere, 2014, 111: 529-536. doi: 10.1016/j.chemosphere.2014.04.035
CrossRef Google Scholar
Pub Med
|
[38]
|
WU S M, ZUBER F, MANIURA-WEBER K, et al. Nanostructured surface topographies have an effect on bactericidal activity [J]. Journal of Nanobiotechnology, 2018, 16(1): 20. doi: 10.1186/s12951-018-0347-0
CrossRef Google Scholar
Pub Med
|
[39]
|
GREBEL J E, PIGNATELLO J J, SONG W H, et al. Impact of halides on the photobleaching of dissolved organic matter [J]. Marine Chemistry, 2009, 115(1/2): 134-144.
Google Scholar
Pub Med
|
[40]
|
MACK J, BOLTON J R. Photochemistry of nitrite and nitrate in aqueous solution: A review [J]. Journal of Photochemistry and Photobiology A:Chemistry, 1999, 128(1/2/3): 1-13.
Google Scholar
Pub Med
|
[41]
|
ZHOU L, SLEIMAN M, FERRONATO C, et al. Reactivity of sulfate radicals with natural organic matters [J]. Environmental Chemistry Letters, 2017, 15(4): 733-737. doi: 10.1007/s10311-017-0646-y
CrossRef Google Scholar
Pub Med
|
[42]
|
OU Q, XU Y H, HE Q, et al. Deposition behavior of dissolved black carbon on representative surfaces: Role of molecular conformation [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105921. doi: 10.1016/j.jece.2021.105921
CrossRef Google Scholar
Pub Med
|
[43]
|
WAITE T D. Role of iron in light-induced environmental processes[M]//The Handbook of Environmental Chemistry. Berlin/Heidelberg: Springer-Verlag, : 255-298.
Google Scholar
Pub Med
|
[44]
|
孔婧, 邓芠, 李若白, 等. 光降解酮洛芬的动力学及影响因素 [J]. 环境化学, 2016, 35(12): 2568-2574. doi: 10.7524/j.issn.0254-6108.2016.12.2016050601
KONG J, DENG W, LI R B, et al. Photolysis of Ketoprofen in aqueous solution: Kinetics and influence of environmental factors [J]. Environmental Chemistry, 2016, 35(12): 2568-2574(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.12.2016050601
CrossRef Google Scholar
Pub Med
|
[45]
|
刘纪阳, 薛爽, 张营, 等. 水相和冰相中不同pH条件下溶解性有机质对苊光降解的影响 [J]. 环境科学学报, 2021, 41(5): 1930-1939. doi: 10.13671/j.hjkxxb.2020.0400
LIU J Y, XUE S, ZHANG Y, et al. Effect of dissolved organic matter on photodegradation of acenaphthene under different pH conditions in water and ice [J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1930-1939(in Chinese). doi: 10.13671/j.hjkxxb.2020.0400
CrossRef Google Scholar
Pub Med
|
[46]
|
李聪鹤, 车潇炜, 白莹, 等. 水体中磺胺甲噁唑间接光降解作用 [J]. 环境科学, 2019, 40(1): 273-280. doi: 10.13227/j.hjkx.201805014
LI C H, CHE X W, BAI Y, et al. Indirect photodegradation of sulfamethoxazole in water [J]. Environmental Science, 2019, 40(1): 273-280(in Chinese). doi: 10.13227/j.hjkx.201805014
CrossRef Google Scholar
Pub Med
|
[47]
|
LÓPEZ-PEÑALVER J J, SÁNCHEZ-POLO M, GÓMEZ-PACHECO C V, et al. Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes [J]. Journal of Chemical Technology & Biotechnology, 2010, 85(10): 1325-1333.
Google Scholar
Pub Med
|
[48]
|
MCNALLY A M, MOODY E C, MCNEILL K. Kinetics and mechanism of the sensitized photodegradation of lignin model compounds [J]. Photochemical & Photobiological Sciences, 2005, 4(3): 268.
Google Scholar
Pub Med
|