Jing Meiqi, Li Chuoran, Wang Longqing, Wang Tian'ao, Xue Xiaoyue, Zhang Xiaohan, Ma Yongzheng. Toxicological Research Progress of Microplastics: Toxicological Effects of Microplastics on Microorganism, Algae, Fish and Mammal[J]. Asian journal of ecotoxicology, 2022, 17(4): 265-280. doi: 10.7524/AJE.1673-5897.20210823002
Citation: Jing Meiqi, Li Chuoran, Wang Longqing, Wang Tian'ao, Xue Xiaoyue, Zhang Xiaohan, Ma Yongzheng. Toxicological Research Progress of Microplastics: Toxicological Effects of Microplastics on Microorganism, Algae, Fish and Mammal[J]. Asian journal of ecotoxicology, 2022, 17(4): 265-280. doi: 10.7524/AJE.1673-5897.20210823002

Toxicological Research Progress of Microplastics: Toxicological Effects of Microplastics on Microorganism, Algae, Fish and Mammal

  • Microplastic can absorb a wide variety of toxic substances including heavy metals due to its small particle size and large specific surface area, resulting in joint toxicity that causes tissue, cell, molecule and other damages. Recent studies revealed that microplastics were able to confer to the adverse effects on microorganism, algae, fish, mammals and so on. Although the harm of microplastics has been attracted more attentions, the toxicological research of microplastics was still limited. This study summarized the current research process on the toxicology of microplastics on the microorganism, algae, fish and mammals, as well as the fate of microplastics via the food chain. Additionally, the ideas and suggestions for the future study on the toxicology of microplastics were discussed.
  • 加载中
  • 李征. 海州湾近岸海域海水及表层沉积物中微塑料种类及分布特征研究[D]. 上海:上海海洋大学, 2020:11-18 Li Z. Types and distribution characteristics of microplastics in seawater and surface sediments in the coastal waters of Haizhou Bay[D]. Shanghai:Shanghai Ocean University, 2020:11 -18(in Chinese)

    Google Scholar Pub Med

    Zarfl C, Matthies M. Are marine plastic particles transport vectors for organic pollutants to the Arctic?[J]. Marine Pollution Bulletin, 2010, 60(10):1810-1814

    Google Scholar Pub Med

    朱莹, 曹淼, 罗景阳, 等. 微塑料的环境影响行为及其在我国的分布状况[J]. 环境科学研究, 2019, 32(9):1437-1447 Zhu Y, Cao M, Luo J Y, et al. Distribution and potential risks of microplastics in China:A review[J]. Research of Environmental Sciences, 2019, 32(9):1437-1447(in Chinese)

    Google Scholar Pub Med

    Barnes D K A, Galgani F, Thompson R C, et al. Accumulation and fragmentation of plastic debris in global environments[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1526):1985-1998

    Google Scholar Pub Med

    Barnes D K A, Walters A, Gonçalves L. Macroplastics at sea around Antarctica[J]. Marine Environmental Research, 2010, 70(2):250-252

    Google Scholar Pub Med

    Jambeck J R, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223):768-771

    Google Scholar Pub Med

    Chae Y, Kim D, Kim S W, et al. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain[J]. Scientific Reports, 2018, 8:284

    Google Scholar Pub Med

    王超云, 董晓菲, 邵青娜, 等. 纳米塑料的污染行为与毒理效应研究进展[J]. 广东化工, 2019, 46(9):138-139 Wang C Y, Dong X F, Shao Q N, et al. Research progress on pollution behavior and toxicological effects of nanoplastics[J]. Guangdong Chemical Industry, 2019, 46(9):138-139(in Chinese)

    Google Scholar Pub Med

    Zhang B, Chao J Y, Chen L, et al. Research progress of nanoplastics in freshwater[J]. Science of the Total Environment, 2021, 757:143791

    Google Scholar Pub Med

    王薪杰, 王一宁, 赵俭, 等. 河流水沙运动对微塑料运移过程影响研究进展[J]. 中国环境科学, 2022, 42(2):863-877 Wang X J, Wang Y N, Zhao J, et al. Recent progress of the effect of suspended sediment movement on the transport of microplastics in rivers[J]. China Environmental Science, 2022, 42(2):863-877(in Chinese)

    Google Scholar Pub Med

    姚泓钰. 水环境中微塑料的污染特征、迁移转化及应对措施[J]. 农村经济与科技, 2021, 32(10):15-17 Yao H Y. Pollution characteristics, migration and transformation of microplastics in water and countermeasures[J]. Rural Economy and Science-Technology, 2021, 32(10):15-17(in Chinese)

    Google Scholar Pub Med

    张秀玲, 鄢紫薇, 王峰, 等. 微塑料添加对橘园土壤有机碳矿化的影响[J]. 环境科学, 2021, 42(9):4558-4565 Zhang X L, Yan Z W, Wang F, et al. Effects of microplastics addition on soil organic carbon mineralization in citrus orchard[J]. Environmental Science, 2021, 42(9):4558-4565(in Chinese)

    Google Scholar Pub Med

    杨玲, 张玉兰, 康世昌, 等. 中国土壤微塑料污染[J]. 自然杂志, 2021, 43(4):267-273 Yang L, Zhang Y L, Kang S C, et al. Microplastic pollution in soil in China[J]. Chinese Journal of Nature, 2021, 43(4):267-273(in Chinese)

    Google Scholar Pub Med

    Vianello A, Jensen R L, Liu L, et al. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin[J]. Scientific Reports, 2019, 9:8670

    Google Scholar Pub Med

    Zhang J J, Wang L, Kannan K. Microplastics in house dust from 12 countries and associated human exposure[J]. Environment International, 2020, 134:105314

    Google Scholar Pub Med

    史文超, 桂梦瑶, 杜俊逸, 等. 典型微塑料对好氧反硝化菌群脱氮特性及反硝化相关基因的影响[J]. 环境工程学报, 2021, 15(4):1333-1343 Shi W C, Gui M Y, Du J Y, et al. Effects of typical microplastics on the denitrification characteristics and denitrification related genes of aerobic denitrifying bacteria[J]. Chinese Journal of Environmental Engineering, 2021, 15(4):1333-1343(in Chinese)

    Google Scholar Pub Med

    Iqbal S, Xu J C, Allen S D, et al. Unraveling consequences of soil micro- and nano-plastic pollution on soil-plant system:Implications for nitrogen (N) cycling and soil microbial activity[J]. Chemosphere, 2020, 260:127578

    Google Scholar Pub Med

    Wu C, Guo W B, Liu Y Y, et al. Perturbation of calcium homeostasis and multixenobiotic resistance by nanoplastics in the ciliate Tetrahymena thermophila[J]. Journal of Hazardous Materials, 2021, 403:123923

    Google Scholar Pub Med

    付茜茜, 李大圳, 章宇晴, 等. 城市红树林系统中微塑料表面细菌群落结构特征分析[J]. 热带作物学报, 2021(12):3692-3698 Fu Q Q, Li D Z, Zhang Y Q, et al. Microbial colonization and communities on microplastics in urban mangrove system[J]. Chinese Journal of Tropical Crops, 2021 (12):3692-3698(in Chinese)

    Google Scholar Pub Med

    桂嘉烯. 微塑料在农村生活垃圾好氧堆肥中的分布变化及对堆肥效果的影响研究[D]. 杭州:浙江大学, 2021:18-20 Du J X. Study on the distribution changes of microplastics in the aerobic composting of rural domestic waste and the influence on the composting effect[D]. Hangzhou:Zhejiang University, 2021:18 -20(in Chinese)

    Google Scholar Pub Med

    刘玮婷, 郭楚玲, 刘沙沙, 等. 微塑料对近岸多环芳烃降解菌群结构及其降解能力的影响[J]. 环境科学学报, 2018, 38(10):4052-4056 Liu W T, Guo C L, Liu S S, et al. Effect of microplastic on the community structure and biodegradation potential of PAHs-degrading bacterial consortium in coastal environment[J]. Acta Scientiae Circumstantiae, 2018, 38(10):4052-4056(in Chinese)

    Google Scholar Pub Med

    Wang L Y, Luo Z X, Zhen Z, et al. Bacterial community colonization on tire microplastics in typical urban water environments and associated impacting factors[J]. Environmental Pollution, 2020, 265:114922

    Google Scholar Pub Med

    Liu X M, Ma J K, Yang C L, et al. The toxicity effects of nano/microplastics on an antibiotic producing strain-Streptomyces coelicolor M145[J]. Science of the Total Environment, 2021, 764:142804

    Google Scholar Pub Med

    Wang Z Q, Gao J F, Dai H H, et al. Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes[J]. Journal of Hazardous Materials, 2021, 409:124981

    Google Scholar Pub Med

    Sun X X, Liang J H, Zhu M L, et al. Microplastics in seawater and zooplankton from the Yellow Sea[J]. Environmental Pollution, 2018, 242:585-595

    Google Scholar Pub Med

    Besseling E, Wang B, Lürling M, et al. Nanoplastic affects growth of S. obliquus and reproduction of D. magna[J]. Environmental Science & Technology, 2014, 48(20):12336-12343

    Google Scholar Pub Med

    Liu Z Q, Li Y M, Pérez E, et al. Polystyrene nanoplastic induces oxidative stress, immune defense, and glycometabolism change in Daphnia pulex:Application of transcriptome profiling in risk assessment of nanoplastics[J]. Journal of Hazardous Materials, 2021, 402:123778

    Google Scholar Pub Med

    Liu Z Q, Li Y M, Sepúlveda M S, et al. Development of an adverse outcome pathway for nanoplastic toxicity in Daphnia pulex using proteomics[J]. Science of the Total Environment, 2021, 766:144249

    Google Scholar Pub Med

    刘全斌. 微塑料在我国渤、黄海浮游动物体内的分布特征及其生物富集和排出过程研究[D]. 大连:大连海事大学, 2020:54-58 Liu Q B. Distribution of microplastics and their uptake and elimination in zooplankton in the Bo Sea and the Yellow Sea[D]. Dalian:Dalian Maritime University, 2020:54 -58(in Chinese)

    Google Scholar Pub Med

    卢萍, 闫振华, 陆光华. 微塑料对环境介质中氮循环的影响研究进展[J]. 环境科学研究, 2021, 34(11):2563-2570 Lu P, Yan Z H, Lu G H. Influence of microplastics on nitrogen cycle in different environments[J]. Research of Environmental Sciences, 2021, 34(11):2563-2570(in Chinese)

    Google Scholar Pub Med

    张晨. 长期多世代下海洋桡足类日本虎斑猛水蚤对微塑料污染的生理响应及其机理[D]. 厦门:厦门大学, 2019:67-75 Zhang C. Physiological and molecular mechanism involved in marine copepod Tigriopus japonicus in response to microplastics multigenerational exposure[D]. Xiamen:Xiamen University, 2019:67 -75(in Chinese)

    Google Scholar Pub Med

    殷岑. 微塑料和有机污染物对水生生物的联合毒性效应研究[D]. 南京:南京理工大学, 2018:32-64 Yin C. The combined toxic effect of microplastic and organic contaminants on aquatic organisms[D]. Nanjing:Nanjing University of Science and Technology, 2018:32 -64(in Chinese)

    Google Scholar Pub Med

    Sjollema S B, Redondo-Hasselerharm P, Leslie H A, et al. Do plastic particles affect microalgal photosynthesis and growth?[J]. Aquatic Toxicology, 2016, 170:259-261

    Google Scholar Pub Med

    Davarpanah E, Guilhermino L. Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii[J]. Estuarine, Coastal and Shelf Science, 2015, 167:269-275

    Google Scholar Pub Med

    Zhang C, Chen X H, Wang J T, et al. Toxic effects of microplastic on marine microalgae Skeletonema costatum:Interactions between microplastic and algae[J]. Environmental Pollution, 2017, 220:1282-1288

    Google Scholar Pub Med

    Schwab F, Bucheli T D, Lukhele L P, et al. Are carbon nanotube effects on green algae caused by shading and agglomeration?[J]. Environmental Science & Technology, 2011, 45(14):6136-6144

    Google Scholar Pub Med

    Bhattacharya P, Lin S J, Turner J P, et al. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis[J]. The Journal of Physical Chemistry C, 2010, 114(39):16556-16561

    Google Scholar Pub Med

    李晨曦, 高雨萱, 张佳祺, 等. 附着在不同微塑料表面的藻类结构与群落组成[J]. 中国环境科学, 2020, 40(8):3360-3366 Li C X, Gao Y X, Zhang J Q, et al. Structure and community composition of algae attached to different microplastic substrates[J]. China Environmental Science, 2020, 40(8):3360-3366(in Chinese)

    Google Scholar Pub Med

    Li F M, Liang Z, Zheng X, et al. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production[J]. Aquatic Toxicology, 2015, 158:1-13

    Google Scholar Pub Med

    Zhang C, Chen X H, Wang J T, et al. Toxicity of zinc oxide nanoparticles on marine microalgae possessing different shapes and surface structures[J]. Environmental Engineering Science, 2018, 35(8):785-790

    Google Scholar Pub Med

    Mao Y F, Ai H N, Chen Y, et al. Phytoplankton response to polystyrene microplastics:Perspective from an entire growth period[J]. Chemosphere, 2018, 208:59-68

    Google Scholar Pub Med

    Sun X D, Yuan X Z, Jia Y B, et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana[J]. Nature Nanotechnology, 2020, 15(9):755-760

    Google Scholar Pub Med

    Canniff P M, Hoang T C. Microplastic ingestion by Daphnia magna and its enhancement on algal growth[J]. Science of the Total Environment, 2018, 633:500-507

    Google Scholar Pub Med

    Choi J S, Jung Y J, Hong N H, et al. Toxicological effects of irregularly shaped and spherical microplastics in a marine teleost, the sheepshead minnow (Cyprinodon variegatus)[J]. Marine Pollution Bulletin, 2018, 129(1):231-240

    Google Scholar Pub Med

    张士春, 庞美霞, 赵洪雅, 等. 海产食品微纳塑料污染现状与危害[J]. 食品安全质量检测学报, 2019, 10(9):2689-2696 Zhang S C, Pang M X, Zhao H Y, et al. Situation and harm of micro-nano plastic pollution in seafood[J]. Journal of Food Safety & Quality, 2019, 10(9):2689-2696(in Chinese)

    Google Scholar Pub Med

    Llorca M, Vega-Herrera A, Schirinzi G, et al. Screening of suspected micro(nano)plastics in the Ebro Delta (Mediterranean Sea)[J]. Journal of Hazardous Materials, 2021, 404:124022

    Google Scholar Pub Med

    Ory N C, Gallardo C, Lenz M, et al. Capture, swallowing, and egestion of microplastics by a planktivorous juvenile fish[J]. Environmental Pollution, 2018, 240:566-573

    Google Scholar Pub Med

    Barboza L G A, Vieira L R, Branco V, et al. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758)[J]. Aquatic Toxicology, 2018, 195:49-57

    Google Scholar Pub Med

    Haghi B N, Banaee M. Effects of micro-plastic particles on paraquat toxicity to common carp (Cyprinus carpio):Biochemical changes[J]. International Journal of Environmental Science and Technology, 2017, 14(3):521-530

    Google Scholar Pub Med

    Wik A, Nilsson E, Källqvist T, et al. Toxicity assessment of sequential leachates of tire powder using a battery of toxicity tests and toxicity identification evaluations[J]. Chemosphere, 2009, 77(7):922-927

    Google Scholar Pub Med

    Cedervall T, Hansson L A, Lard M, et al. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish[J]. PLoS One, 2012, 7(2):e32254

    Google Scholar Pub Med

    Mattsson K, Ekvall M T, Hansson L A, et al. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles[J]. Environmental Science & Technology, 2015, 49(1):553-561

    Google Scholar Pub Med

    Brandts I, Barría C, Martins M A, et al. Waterborne exposure of gilthead seabream (Sparus aurata) to polymethylmethacrylate nanoplastics causes effects at cellular and molecular levels[J]. Journal of Hazardous Materials, 2021, 403:123590

    Google Scholar Pub Med

    Qiao R X, Lu K, Deng Y F, et al. Combined effects of polystyrene microplastics and natural organic matter on the accumulation and toxicity of copper in zebrafish[J]. Science of the Total Environment, 2019, 682:128-137

    Google Scholar Pub Med

    Lei L L, Wu S Y, Lu S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 2018, 619-620:1-8

    Google Scholar Pub Med

    Lu Y F, Zhang Y, Deng Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7):4054-4060

    Google Scholar Pub Med

    蓝益添, 陈星霖, 刘漫琳, 等. 微塑料对淡水鱼生长的影响研究[J]. 生物学通报, 2019, 54(5):50-52 Lan Y T, Chen X L, Liu M L, et al. Effect of microplastics on the growth of freshwater fish[J]. Bulletin of Biology, 2019, 54(5):50-52(in Chinese)

    Google Scholar Pub Med

    Chen Q Q, Yin D Q, Jia Y L, et al. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish[J]. Science of the Total Environment, 2017, 609:1312-1321

    Google Scholar Pub Med

    Prata J C, da Costa J P, Lopes I, et al. Environmental exposure to microplastics:An overview on possible human health effects[J]. Science of the Total Environment, 2020, 702:134455

    Google Scholar Pub Med

    Smith M, Love D C, Rochman C M, et al. Microplastics in seafood and the implications for human health[J]. Current Environmental Health Reports, 2018, 5(3):375-386

    Google Scholar Pub Med

    Zuccarello P, Ferrante M, Cristaldi A, et al. Exposure to microplastics (<10μm) associated to plastic bottles mineral water consumption:The first quantitative study[J]. Water Research, 2019, 157:365-371

    Google Scholar Pub Med

    Karami A, Golieskardi A, Choo C K, et al. The presence of microplastics in commercial salts from different countries[J]. Scientific Reports, 2017, 7:46173

    Google Scholar Pub Med

    Carr K E, Smyth S H, McCullough M T, et al. Morphological aspects of interactions between microparticles and mammalian cells:Intestinal uptake and onward movement[J]. Progress in Histochemistry and Cytochemistry, 2012, 46(4):185-252

    Google Scholar Pub Med

    Wu B, Wu X M, Liu S, et al. Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2-cells[J]. Chemosphere, 2019, 221:333-341

    Google Scholar Pub Med

    Thubagere A, Reinhard B M. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing:Insights from a human intestinal epithelium in vitro model[J]. ACS Nano, 2010, 4(7):3611-3622

    Google Scholar Pub Med

    Revel M, Chȃtel A, Mouneyrac C. Micro(nano)plastics:A threat to human health?[J]. Current Opinion in Environmental Science & Health, 2018, 1:17-23

    Google Scholar Pub Med

    Kulkarni S A, Feng S S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery[J]. Pharmaceutical Research, 2013, 30(10):2512-2522

    Google Scholar Pub Med

    des Rieux A, Fievez V, Théate I, et al. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells[J]. European Journal of Pharmaceutical Sciences, 2007, 30(5):380-391

    Google Scholar Pub Med

    Walczak A P, Kramer E, Hendriksen P J M, et al. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity[J]. Nanotoxicology, 2015, 9(4):453-461

    Google Scholar Pub Med

    Prata J C. Airborne microplastics:Consequences to human health?[J]. Environmental Pollution, 2018, 234:115-126

    Google Scholar Pub Med

    Zitko V, Hanlon M. Another source of pollution by plastics:Skin cleaners with plastic scrubbers[J]. Marine Pollution Bulletin, 1991, 22(1):41-42

    Google Scholar Pub Med

    Hernandez L M, Yousefi N, Tufenkji N. Are there nanoplastics in your personal care products?[J]. Environmental Science & Technology Letters, 2017, 4(7):280-285

    Google Scholar Pub Med

    Sykes E A, Dai Q, Tsoi K M, et al. Nanoparticle exposure in animals can be visualized in the skin and analysed via skin biopsy[J]. Nature Communications, 2014, 5:3796

    Google Scholar Pub Med

    Schirinzi G F, Pérez-Pomeda I, Sanchís J, et al. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells[J]. Environmental Research, 2017, 159:579-587

    Google Scholar Pub Med

    Li B Q, Ding Y F, Cheng X, et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice[J]. Chemosphere, 2020, 244:125492

    Google Scholar Pub Med

    Lu L, Wan Z Q, Luo T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice[J]. Science of the Total Environment, 2018, 631-632:449-458

    Google Scholar Pub Med

    Jin Y X, Lu L, Tu W Q, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice[J]. Science of the Total Environment, 2019, 649:308-317

    Google Scholar Pub Med

    Hans B, Hollman Peter C H, Peters Ruud J B. Potential health impact of environmentally released micro- and nanoplastics in the human food production chain:Experiences from nanotoxicology[J]. Environmental Science & Technology, 2015, 49(15):8932-8947

    Google Scholar Pub Med

    Powell J J, Thoree V, Pele L C. Dietary microparticles and their impact on tolerance and immune responsiveness of the gastrointestinal tract[J]. The British Journal of Nutrition, 2007, 98(Suppl.1):S59-S63

    Google Scholar Pub Med

    Handy R D, Henry T B, Scown T M, et al. Manufactured nanoparticles:Their uptake and effects on fish-A mechanistic analysis[J]. Ecotoxicology, 2008, 17(5):396-409

    Google Scholar Pub Med

    Liu S, Wu X M, Gu W Q, et al. Influence of the digestive process on intestinal toxicity of polystyrene microplastics as determined by in vitro Caco-2 models[J]. Chemosphere, 2020, 256:127204

    Google Scholar Pub Med

    Luo Z X, Zhou X Y, Su Y, et al. Environmental occurrence, fate, impact, and potential solution of tire microplastics:Similarities and differences with tire wear particles[J]. Science of the Total Environment, 2021, 795:148902

    Google Scholar Pub Med

    Forte M, Iachetta G, Tussellino M, et al. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells[J]. Toxicology in Vitro, 2016, 31:126-136

    Google Scholar Pub Med

    Gasperi J, Wright S L, Dris R, et al. Microplastics in air:Are we breathing it in?[J]. Current Opinion in Environmental Science & Health, 2018, 1:1-5

    Google Scholar Pub Med

    Dong C D, Chen C W, Chen Y C, et al. Polystyrene microplastic particles:in vitro pulmonary toxicity assessment[J]. Journal of Hazardous Materials, 2020, 385:121575

    Google Scholar Pub Med

    Xu M K, Halimu G, Zhang Q R, et al. Internalization and toxicity:A preliminary study of effects of nanoplastic particles on human lung epithelial cell[J]. Science of the Total Environment, 2019, 694:133794

    Google Scholar Pub Med

    Lim S L, Ng C T, Zou L, et al. Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells[J]. Nanotoxicology, 2019, 13(8):1117-1132

    Google Scholar Pub Med

    Park E J, Han J S, Park E J, et al. Repeated-oral dose toxicity of polyethylene microplastics and the possible implications on reproduction and development of the next generation[J]. Toxicology Letters, 2020, 324:75-85

    Google Scholar Pub Med

    Yoo J W, Doshi N, Mitragotri S. Adaptive micro and nanoparticles:Temporal control over carrier properties to facilitate drug delivery[J]. Advanced Drug Delivery Reviews, 2011, 63(14-15):1247-1256

    Google Scholar Pub Med

    Gratton S E A, Ropp P A, Pohlhaus P D, et al. The effect of particle design on cellular internalization pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(33):11613-11618

    Google Scholar Pub Med

    Muro S, Garnacho C, Champion J A, et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers[J]. Molecular Therapy, 2008, 16(8):1450-1458

    Google Scholar Pub Med

    Prietl B, Meindl C, Roblegg E, et al. Nano-sized and micro-sized polystyrene particles affect phagocyte function[J]. Cell Biology and Toxicology, 2014, 30(1):1-16

    Google Scholar Pub Med

    Seltenrich N. New link in the food chain? Marine plastic pollution and seafood safety[J]. Environmental Health Perspectives, 2015, 123(2):A34-A41

    Google Scholar Pub Med

    Schirinzi G F, Pérez-Pomeda I, Sanchís J, et al. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells[J]. Environmental Research, 2017, 159:579-587

    Google Scholar Pub Med

    Prata J C, da Costa J P, Lopes I, et al. Environmental exposure to microplastics:An overview on possible human health effects[J]. Science of the Total Environment, 2020, 702:134455

    Google Scholar Pub Med

    Rafiee M, Dargahi L, Eslami A, et al. Neurobehavioral assessment of rats exposed to pristine polystyrene nanoplastics upon oral exposure[J]. Chemosphere, 2018, 193:745-753

    Google Scholar Pub Med

    Xie X M, Deng T, Duan J F, et al. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway[J]. Ecotoxicology and Environmental Safety, 2020, 190:110133

    Google Scholar Pub Med

    田坤明, 陈秋. 不同粒径微塑料颗粒亚急性染毒对雄性小鼠生殖毒性的影响[J]. 毒理学杂志, 2020, 34(6):492-496 Tian K M, Chen Q. The effect of sub-acute exposure of microplastics on the male mice reproductive function[J]. Journal of Toxicology, 2020, 34(6):492-496(in Chinese)

    Google Scholar Pub Med

    Wick P, Malek A, Manser P, et al. Barrier capacity of human placenta for nanosized materials[J]. Environmental Health Perspectives, 2010, 118(3):432-436

    Google Scholar Pub Med

    曹腾瑞, 屈艾彬, 郭会彩, 等. 微塑料毒性的研究进展[J]. 河北医科大学学报, 2021, 42(1):107-111 Cao T R, Qu A B, Guo H C, et al. Research progress of toxicity of microplastics[J]. Journal of Hebei Medical University, 2021, 42(1):107-111(in Chinese)

    Google Scholar Pub Med

    Murray F, Cowie P R. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758)[J]. Marine Pollution Bulletin, 2011, 62(6):1207-1217

    Google Scholar Pub Med

    Farrell P, Nelson K. Trophic level transfer of microplastic:Mytilus edulis (L.) to Carcinus maenas (L.)[J]. Environmental Pollution, 2013, 177:1-3

    Google Scholar Pub Med

    Set älä O, Fleming-Lehtinen V, Lehtiniemi M. Ingestion and transfer of microplastics in the planktonic food web[J]. Environmental Pollution, 2014, 185:77-83

    Google Scholar Pub Med

    Huerta Lwanga E, Mendoza Vega J, Ku Quej V, et al. Field evidence for transfer of plastic debris along a terrestrial food chain[J]. Scientific Reports, 2017, 7:14071

    Google Scholar Pub Med

    Li L Z, Luo Y M, Li R J, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11):929-937

    Google Scholar Pub Med

    Zhang J J, Wang L, Kannan K. Polyethylene terephthalate and polycarbonate microplastics in pet food and feces from the United States[J]. Environmental Science & Technology, 2019, 53(20):12035-12042

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(7052) PDF downloads(461) Cited by(0)

Access History

Toxicological Research Progress of Microplastics: Toxicological Effects of Microplastics on Microorganism, Algae, Fish and Mammal

Fund Project:

Abstract: Microplastic can absorb a wide variety of toxic substances including heavy metals due to its small particle size and large specific surface area, resulting in joint toxicity that causes tissue, cell, molecule and other damages. Recent studies revealed that microplastics were able to confer to the adverse effects on microorganism, algae, fish, mammals and so on. Although the harm of microplastics has been attracted more attentions, the toxicological research of microplastics was still limited. This study summarized the current research process on the toxicology of microplastics on the microorganism, algae, fish and mammals, as well as the fate of microplastics via the food chain. Additionally, the ideas and suggestions for the future study on the toxicology of microplastics were discussed.

Reference (106)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint