2022 Volume 17 Issue 4
Article Contents

Liu Shan, Wu Fenghui, Qu Guangfei, Zhao Chenyang, Chen Bangjin, Yang Yuyi. Migration and Transformation of Heavy Metals in Phosphogypsum Storage Process and Their Ecological Effect[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 302-314. doi: 10.7524/AJE.1673-5897.20210803002
Citation: Liu Shan, Wu Fenghui, Qu Guangfei, Zhao Chenyang, Chen Bangjin, Yang Yuyi. Migration and Transformation of Heavy Metals in Phosphogypsum Storage Process and Their Ecological Effect[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 302-314. doi: 10.7524/AJE.1673-5897.20210803002

Migration and Transformation of Heavy Metals in Phosphogypsum Storage Process and Their Ecological Effect

  • Corresponding author: Qu Guangfei, 39233733@qq.com
  • Received Date: 03/08/2021
    Fund Project:
  • With the rapid development of the phosphorus chemical field, phosphogypsum, as a one of typical solid by-product, presents a series of characteristics such as large production capacity and large storage base with a low resource utilization rate. The treatment and disposal of the phosphogypsum have become a major challenge for phosphorus chemical enterprises to achieve sustainable development and protect public health and the environment. At present, there are few studies on the migration and transformation of harmful heavy metals in the phosphogypsum stacking process, and the variable forms of harmful components in phosphogypsum have seriously restricted its subsequent resource utilization. Based on the domestic and foreign researches on the hazardous substances in phosphogypsum, this review has analyzed and discussed the migration and transformation behavior of heavy metals in the water body, soil, crust, plant body, liquid-solid phase during phosphogypsum stacking period. At the same time, the ecological harmful effects and pathways of phosphogypsum on various environmental stages were analyzed in detail, which has provided theoretical support for the study of the pollution characteristics of heavy metals pollution in phosphogypsum and proposed possible ways to harmless and resourceful utilization.
  • 加载中
  • Kumar S S, Kumar A, Singh S, et al. Industrial wastes:Fly ash, steel slag and phosphogypsum- potential candidates to mitigate greenhouse gas emissions from paddy fields[J]. Chemosphere, 2020, 241:124824

    Google Scholar Pub Med

    童俊. "十三五"磷石膏处理处置现状及展望[J]. 建材发展导向, 2018, 16(16):6-11 Tong J. Present situation and prospect of phosphogypsum treatment and disposal in the 13th Five-year Plan[J]. Development Guide to Building Materials, 2018, 16(16):6-11(in Chinese)

    Google Scholar Pub Med

    张利珍, 张永兴, 张秀峰, 等. 中国磷石膏资源化综合利用研究进展[J]. 矿产保护与利用, 2019, 39(4):14-18 , 92 Zhang L Z, Zhang Y X, Zhang X F, et al. Research progress on resource utilization of phosphogypsum in China[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4):14-18, 92(in Chinese)

    Google Scholar Pub Med

    马丽萍. 云南磷石膏资源化综合利用现状及发展思考[J]. 云南化工, 2019, 46(11):48-56 Ma L P. Comprehensive utilization of phosphogypsum in Yunnan-Present situation and analysis[J]. Yunnan Chemical Technology, 2019, 46(11):48-56(in Chinese)

    Google Scholar Pub Med

    李鹏毅, 张冬冬, 宁平, 等. 磷尾矿资源化利用研究[J]. 化工矿物与加工, 2019, 48(2):66-70 Li P Y, Zhang D D, Ning P, et al. Study on resource utilization of phosphate tailings[J]. Industrial Minerals & Processing, 2019, 48(2):66-70(in Chinese)

    Google Scholar Pub Med

    田键, 苑跃辉, 黄志林, 等. 磷石膏的综合利用现状及建议[J]. 建材世界, 2018, 39(4):38-40 , 51 Tian J, Yuan Y H, Huang Z L, et al. Status and prospect of comprehensive utilization of phosphogypsum[J]. The World of Building Materials, 2018, 39(4):38-40, 51(in Chinese)

    Google Scholar Pub Med

    李晓英, 张琴, 雷波, 等. 粉煤灰-水泥基发泡保温材料研究及应用[J]. 绿色科技, 2017(6):164-168 Li X Y, Zhang Q, Lei B, et al. Research and application of fly ash-cement-based foam concrete thermal insulation material[J]. Journal of Green Science and Technology, 2017 (6):164-168(in Chinese)

    Google Scholar Pub Med

    Cánovas C R, Pérez-López R, Macías F, et al. Exploration of fertilizer industry wastes as potential source of critical raw materials[J]. Journal of Cleaner Production, 2017, 143:497-505

    Google Scholar Pub Med

    王仙慧, 龙涛, 张建昆, 等. 土壤钝化剂对磷石膏污染土壤中Cd的钝化修复效应[J]. 湖北农业科学, 2020, 59(12):68-71 Wang X H, Long T, Zhang J K, et al. Remediation effect of different passivation agents on cadmium in phosphogypsum contaminated soil[J]. Hubei Agricultural Sciences, 2020, 59(12):68-71(in Chinese)

    Google Scholar Pub Med

    刘同海. 湿法磷酸体系中二水硫酸钙结晶过程的研究[D]. 合肥:合肥工业大学, 2016:18-19 Liu T H. Study on the crystallization process of calcium sulfate dihydrate in the wet process phosphoric acid system[D]. Hefei:Hefei University of Technology, 2016:18 -19(in Chinese)

    Google Scholar Pub Med

    刘润哲, 刘丽芬, 欧志兵, 等. 磷矿尾矿资源化利用研究进展[J]. 化工矿物与加工, 2020, 49(2):52-56 Liu R Z, Liu L F, Ou Z B, et al. Research progress on utilization of resources of phosphate tailings[J]. Industrial Minerals & Processing, 2020, 49(2):52-56(in Chinese)

    Google Scholar Pub Med

    Ma P F, Yang W, Kang Z Q, et al. Study on the mechanical properties of phosphogypsum composite cementing materials based on alkali excitation[J]. IOP Conference Series:Earth and Environmental Science, 2021, 669(1):012031

    Google Scholar Pub Med

    Mi Y, Chen D Y, Wang S Z. Utilization of phosphogypsum for the preparation of α-calcium sulfate hemihydrate in chloride-free solution under atmospheric pressure[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(8):2371-2379

    Google Scholar Pub Med

    Mao X L, Song X F, Lu G M, et al. Effects of metal ions on crystal morphology and size of calcium sulfate whiskers in aqueous HCl solutions[J]. Industrial & Engineering Chemistry Research, 2014, 53(45):17625-17635

    Google Scholar Pub Med

    Follner S, Wolter A, Preusser A, et al. The setting behaviour of α- and β-CaSO4 瘙簚 0.5 H2O as a function of crystal structure and morphology[J]. Crystal Research and Technology, 2002, 37(10):1075-1087

    Google Scholar Pub Med

    罗大鹏, 雍毅, 侯江, 等. 磷石膏基α-半水石膏的制备及其在绿色建材中的应用[J]. 磷肥与复肥, 2020, 35(11):32-36 Luo D P, Yong Y, Hou J, et al. Preparation on α-hemihydrate gypsum from phosphogypsum and its application in the green building materials[J]. Phosphate & Compound Fertilizer, 2020, 35(11):32-36(in Chinese)

    Google Scholar Pub Med

    兰文涛. 半水磷石膏基矿用复合充填材料及其管输特性研究[D]. 北京:北京科技大学, 2019:17-22 Lan W T. Research on hemihydrate phosphogypsum based mineral filling composites and its pipe flow performance[D]. Beijing:University of Science and Technology Beijing, 2019:17 -22(in Chinese)

    Google Scholar Pub Med

    黄承, 蒋海斌. 硫酸钙晶须制备工艺的探讨[J]. 苏盐科技, 2011(1):1-4, 35 Huang C, Jiang H B. Discussion on preparation technology of calcium sulfate whisker[J]. Jiangsu Salt Science & Technology, 2011(1):1-4, 35(in Chinese)

    Google Scholar Pub Med

    吕鹏飞, 费德君, 党亚固. 磷石膏制备硫酸钙晶须及晶须造纸应用的研究进展[J]. 化工进展, 2013, 32(4):842-847 , 890 Lv P F, Fei D J, Dang Y G. Preparation of calcium sulfate whisker from phosphogypsum and its application[J]. Chemical Industry and Engineering Progress, 2013, 32(4):842-847, 890(in Chinese)

    Google Scholar Pub Med

    Wang X, Yang L S, Zhu X F, et al. Preparation of calcium sulfate whiskers from FGD gypsum via hydrothermal crystallization in the H2SO4-NaCl-H2O system[J]. Particuology, 2014, 17:42-48

    Google Scholar Pub Med

    李显波. 高强α半水磷石膏晶形调控及水化硬化性能研究[D]. 贵阳:贵州大学, 2019:15-19 Li X B. Crystal morphology control and hydration hardening properties of high strength α-hemihydrate phosphogypsum[D]. Guiyang:Guizhou University, 2019:15 -19(in Chinese)

    Google Scholar Pub Med

    耿庆钰, 李建锡, 韩伟明, 等. 磷石膏蒸压制备半水硫酸钙晶须[J]. 人工晶体学报, 2016, 45(7):1892-1897 , 1905 Geng Q Y, Li J X, Han W M, et al. Preparation of calcium sulfate hemihydrate whisker by phosphogypsum autoclave method[J]. Journal of Synthetic Crystals, 2016, 45(7):1892-1897, 1905(in Chinese)

    Google Scholar Pub Med

    刘金凤. 工业磷石膏基α-半水石膏的制备及其浆体性能调控研究[D]. 绵阳:西南科技大学, 2019:14-16 Liu J F. Preparation of industrial phosphogypsum-based α-hemihydrate gypsum and regulation of its paste properties[D]. Mianyang:Southwest University of Science and Technology, 2019:14 -16(in Chinese)

    Google Scholar Pub Med

    Mi Y, Chen D Y, Wang A W. Effects of phosphorus impurities on the preparation of α-calcium sulfate hemihydrate from waste phosphogypsum with the salt solution method under atmospheric pressure[J]. CrystEngComm, 2019, 21(16):2631-2640

    Google Scholar Pub Med

    何花. 磷石膏基醇-水热法制备大长径比改性硫酸钙晶须研究[D]. 绵阳:西南科技大学, 2014:15-17 He H. Study on phosphogypsum-based modified calcium sulfate whiskers with large aspect ratio by glycerol-hydrothermal method[D]. Mianyang:Southwest University of Science and Technology, 2014:15 -17(in Chinese)

    Google Scholar Pub Med

    Guan B H, Jiang G M, Fu H L, et al. Thermodynamic preparation window of alpha calcium sulfate hemihydrate from calcium sulfate dihydrate in non-electrolyte glycerol-water solution under mild conditions[J]. Industrial & Engineering Chemistry Research, 2011, 50(23):13561-13567

    Google Scholar Pub Med

    米阳. 常压无氯盐溶液法α-半水磷石膏的制备及晶形调控研究[D]. 绵阳:西南科技大学, 2019:12-16 Mi Y. Morphology-controlled preparation of α-calcium sulfate hemihydrate from phosphogypsum via chloride-free solution method[D]. Mianyang:Southwest University of Science and Technology, 2019:12 -16(in Chinese)

    Google Scholar Pub Med

    张艳萍. 磷石膏晶须造纸涂料的初步研究[D]. 天津:天津科技大学, 2018:12-15 Zhang Y P. Preliminary study on phosphogypsum whisker in papermaking coating[D]. Tianjin:Tianjin University of Science & Technology, 2018:12 -15(in Chinese)

    Google Scholar Pub Med

    张天毅, 何兵兵, 薛绍秀, 等. 磷石膏晶须的制备与应用研究进展[J]. 广州化工, 2017, 45(15):11-13 , 23 Zhang T Y, He B B, Xue S X, et al. Research progress on preparation and application of phosphogypsum whisker[J]. Guangzhou Chemical Industry, 2017, 45(15):11-13, 23(in Chinese)

    Google Scholar Pub Med

    Chen Y, Ding Y, Dong Y J, et al. Surface modification of calcium sulfate whisker using thiol-ene click reaction and its application in reinforced silicone rubber[J]. Journal of Polymer Science, 2020, 58(4):624-635

    Google Scholar Pub Med

    Fu H L, Huang J S, Shen L M, et al. Role and fate of the lead during the conversion of calcium sulfate dihydrate to α-hemihydrate whiskers in ethylene glycol-water solutions[J]. Chemical Engineering Journal, 2019, 372:74-81

    Google Scholar Pub Med

    郭蒙, 甄德帅, 高林晓, 等. 磷石膏酸化法优化制备硫酸钙晶须[J]. 化工矿物与加工, 2018, 47(4):11-13 Guo M, Zhen D S, Gao L X, et al. Optimization and preparation of calcium sulfate whisker by phosphogypsum acidification[J]. Industrial Minerals & Processing, 2018, 47(4):11-13(in Chinese)

    Google Scholar Pub Med

    邓涛, 董发勤, 刘金凤, 等. 开放醇水体系制备磷石膏基无水石膏晶须及在丁腈橡胶中的应用探索[J]. 中国陶瓷, 2019, 55(9):23-30 Deng T, Dong F Q, Liu J F, et al. Preparation of phosphogypsum-based anhydrite whiskers by open alcoholic water system and its application in nitrile rubber[J]. China Ceramics, 2019, 55(9):23-30(in Chinese)

    Google Scholar Pub Med

    谢晴, 蒋美雪, 彭同江, 等. 磷石膏常压酸化法制备无水硫酸钙晶须的实验研究[J]. 人工晶体学报, 2019, 48(6):1060-1066 , 1071 Xie Q, Jiang M X, Peng T J, et al. Experimental study on preparation of anhydrous calcium sulfate whisker by phosphogypsum at atmospheric acidification method[J]. Journal of Synthetic Crystals, 2019, 48(6):1060-1066, 1071(in Chinese)

    Google Scholar Pub Med

    林艳. 工业副产石膏制备高纯硫酸钙(晶须)的工艺技术研究[D]. 绵阳:西南科技大学, 2018:127-129 Lin Y. Study on processing technology of high purity calcium sulfate (whisker) from industrial by-product gypsum[D]. Mianyang:Southwest University of Science and Technology, 2018:127 -129(in Chinese)

    Google Scholar Pub Med

    Tan H B, Dong F Q, Bian L, et al. Preparation of anhydrous calcium sulfate whiskers from phosphogypsum in H2O-H2SO4 autoclave-free hydrothermal system[J]. Materials Transactions, 2017, 58(8):1111-1117

    Google Scholar Pub Med

    Hentati O, Abrantes N, Caetano A L, et al. Phosphogypsum as a soil fertilizer:Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants[J]. Journal of Hazardous Materials, 2015, 294:80-89

    Google Scholar Pub Med

    Saadaoui E, Ghazel N, Ben Romdhane C, et al. Phosphogypsum:Potential uses and problems-A review[J]. International Journal of Environmental Studies, 2017, 74(4):558-567

    Google Scholar Pub Med

    邱学剑. 磷石膏晶须对污水中磷和重金属离子的吸附效应研究[D]. 贵阳:贵州大学, 2015:57-58 Qiu X J. Study on adsorption effect of phosphogypsum whisker on phosphorus and heavy metal ions in wastewater[D]. Guiyang:Guizhou University, 2015:57 -58(in Chinese)

    Google Scholar Pub Med

    蒋达波, 谭建红, 周硕林, 等. 磷石膏在合成缩醛(酮)中的催化作用研究[J]. 广州化工, 2018, 46(8):38-41 Jiang D B, Tan J H, Zhou S L, et al. Investigative on catalytic performance of phosphogypsum in synthesis of acetals (ketals)[J]. Guangzhou Chemical Industry, 2018, 46(8):38-41(in Chinese)

    Google Scholar Pub Med

    Al-Hwaiti M, Ibrahim K A, Harrara M. Removal of heavy metals from waste phosphogypsum materials using polyethylene glycol and polyvinyl alcohol polymers[J]. Arabian Journal of Chemistry, 2019, 12(8):3141-3150

    Google Scholar Pub Med

    侯赟. 磷石膏影响区重金属地球化学特征及其赋存形态研究[D]. 成都:成都理工大学, 2015:10 Hou B. Geochemical characteristics and chemical speciation of heavy metals elements in areas affected by phosphogypsum[D]. Chengdu:Chengdu University of Technology, 2015:10(in Chinese)

    Google Scholar Pub Med

    Li Y, Luo W H, Li G X, et al. Performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation in pig manure composting[J]. Bioresource Technology, 2018, 250:53-59

    Google Scholar Pub Med

    王洋, 吴二红. 贵州省主要磷矿区上磷矿层放射性水平调查[J]. 工程技术研究, 2020, 5(15):239-240 , 243 Wang Y, Wu E H. Investigation on radioactivity level of upper phosphate rock in main phosphate rock areas of Guizhou Province[J]. Engineering and Technological Research, 2020, 5(15):239-240, 243(in Chinese)

    Google Scholar Pub Med

    Zmemla R, Sdiri A, Naifar I, et al. Tunisian phosphogypsum tailings:Assessment of leaching behavior for an integrated management approach[J]. Environmental Engineering Research, 2020, 25(3):345-355

    Google Scholar Pub Med

    Vásconez-Maza M D, Martínez-Segura M A, Bueso M C, et al. Predicting spatial distribution of heavy metals in an abandoned phosphogypsum pond combining geochemistry, electrical resistivity tomography and statistical methods[J]. Journal of Hazardous Materials, 2019, 374:392-400

    Google Scholar Pub Med

    宁小兵, 彭远锋. 磷石膏堆放场地砷、锌和铅的污染特征分析[J]. 中国资源综合利用, 2018, 36(10):29-34 Ning X B, Peng Y F. The study of polluted characterization on arsenic, lead and zinc in the vicinity of phosphogypsum deposition site[J]. China Resources Comprehensive Utilization, 2018, 36(10):29-34(in Chinese)

    Google Scholar Pub Med

    Guerrero J L, Pérez-Moreno S M, Gutiérrez-Álvarez I, et al. Behaviour of heavy metals and natural radionuclides in the mixing of phosphogypsum leachates with seawater[J]. Environmental Pollution, 2021, 268:115843

    Google Scholar Pub Med

    Ben Chabchoubi I, Bouguerra S, Ksibi M, et al. Health risk assessment of heavy metals exposure via consumption of crops grown in phosphogypsum-contaminated soils[J]. Environmental Geochemistry and Health, 2021, 43(5):1953-1981

    Google Scholar Pub Med

    Wang J M. RETRACTED:Utilization effects and environmental risks of phosphogypsum in agriculture:A review[J]. Journal of Cleaner Production, 2020, 276:123337

    Google Scholar Pub Med

    Torres-Sánchez R, Sánchez-Rodas D, de la Campa A M S, et al. Geochemistry and source contribution of fugitive phosphogypsum particles in Huelva, (SW Spain)[J]. Atmospheric Research, 2019, 230:104650

    Google Scholar Pub Med

    Lieberman R N, Izquierdo M, Córdoba P, et al. The geochemical evolution of brines from phosphogypsum deposits in Huelva (SW Spain) and its environmental implications[J]. Science of the Total Environment, 2020, 700:134444

    Google Scholar Pub Med

    陈龙, 何月云, 沈亮. 一种修复重金属污染地的化学添加剂及其使用方法及其使用方法:CN109929562A[P]. 2019-06-25

    Google Scholar Pub Med

    王晓岑, 李淑芹, 许景钢. 农业应用磷石膏前景展望[J]. 中国农学通报, 2010, 26(4):287-294 Wang X C, Li S Q, Xu J G. Prospects for applications of phosphogypsum in agriculture[J]. Chinese Agricultural Science Bulletin, 2010, 26(4):287-294(in Chinese)

    Google Scholar Pub Med

    Dai Q X, Xie L G, Ma L P, et al. Effects of flocculant-modified phosphogypsum on sludge treatment:Investigation of the operating parameters, variations of the chemical groups, and heavy metals in the sludge[J]. Environmental Science:Water Research & Technology, 2021, 7(1):184-196

    Google Scholar Pub Med

    张汉泉, 许鑫, 胡超杰, 等. 磷化工固体废弃物综合利用技术现状[J]. 中国矿业, 2021, 30(4):50-55 , 63 Zhang H Q, Xu X, Hu C J, et al. Current situation of comprehensive utilization technology of solid waste of phosphorus chemical[J]. China Mining Magazine, 2021, 30(4):50-55, 63(in Chinese)

    Google Scholar Pub Med

    Lütke S F, Oliveira M L S, Silva L F O, et al. Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry[J]. Chemosphere, 2020, 256:127138

    Google Scholar Pub Med

    Elloumi N, Belhaj D, Mseddi S, et al. Response of Nerium oleander to phosphogypsum amendment and its potential use for phytoremediation[J]. Ecological Engineering, 2017, 99:164-171

    Google Scholar Pub Med

    Smaoui-Jardak M, Kriaa W, Maalej M, et al. Effect of the phosphogypsum amendment of saline and agricultural soils on growth, productivity and antioxidant enzyme activities of tomato (Solanum lycopersicum L.)[J]. Ecotoxicology, 2017, 26(8):1089-1104

    Google Scholar Pub Med

    Chernysh Y, Balintova M, Plyatsuk L, et al. The influence of phosphogypsum addition on Phosphorus release in biochemical treatment of sewage sludge[J]. International Journal of Environmental Research and Public Health, 2018, 15(6):1269

    Google Scholar Pub Med

    Vardhan K H, Kumar P S, Panda R C. A review on heavy metal pollution, toxicity and remedial measures:Current trends and future perspectives[J]. Journal of Molecular Liquids, 2019, 290:111197

    Google Scholar Pub Med

    Vareda J P, Valente A J M, Durães L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies:A review[J]. Journal of Environmental Management, 2019, 246:101-118

    Google Scholar Pub Med

    Lieberman R N, Izquierdo M, Córdoba P, et al. The geochemical evolution of brines from phosphogypsum deposits in Huelva (SW Spain) and its environmental implications[J]. Science of the Total Environment, 2020, 700:134444

    Google Scholar Pub Med

    秦勇光, 许汉华, 刘文连, 等. 某磷石膏堆场渗漏分析[J]. 中国水运(下半月), 2020, 20(11):111-113 Qin Y G, Xu H H, Liu W L, et al. Leakage analysis of a phosphogypsum yard[J]. China Water Transport, 2020, 20(11):111-113(in Chinese)

    Google Scholar Pub Med

    Pérez-López R, Macías F, Cánovas C R, et al. Pollutant flows from a phosphogypsum disposal area to an estuarine environment:An insight from geochemical signatures[J]. Science of the Total Environment, 2016, 553:42-51

    Google Scholar Pub Med

    王小彬, 闫湘, 李秀英, 等. 磷石膏农用的环境安全风险[J]. 中国农业科学, 2019, 52(2):293-311 Wang X B, Yan X, Li X Y, et al. Environmental risks for application of phosphogysum in agricultural soils in China[J]. Scientia Agricultura Sinica, 2019, 52(2):293-311(in Chinese)

    Google Scholar Pub Med

    史绵红. 由地下水质量标准的更新探讨地下水与相关水环境水质标准的联系[J]. 环境保护前沿, 2018(6):498-507 Shi M H. Discussion on the relation between updated groundwater quality standard and relevant water quality standards[J]. Advances in Environmental Protection, 2018 (6):498-507(in Chinese)

    Google Scholar Pub Med

    谢荣, 吴永贵, 王晓睿, 等. 磷石膏浸出液对斑马鱼的急性毒性及氧化应激损伤[J]. 环境科学学报, 2021, 41(3):1101-1110 Xie R, Wu Y G, Wang X R, et al. Acute toxicity and oxidative stress damage of phosphogypsum leachate to zebrafish (Danio rerio)[J]. Acta Scientiae Circumstantiae, 2021, 41(3):1101-1110(in Chinese)

    Google Scholar Pub Med

    Khan A, Singh P, Srivastava A. Synthesis, nature and utility of universal iron chelator-Siderophore:A review[J]. Microbiological Research, 2018, 212-213:103-111

    Google Scholar Pub Med

    Jalali J, Gaudin P, Capiaux H, et al. Fate and transport of metal trace elements from phosphogypsum piles in Tunisia and their impact on soil bacteria and wild plants[J]. Ecotoxicology and Environmental Safety, 2019, 174:12-25

    Google Scholar Pub Med

    Jalali J, Gaudin P, Capiaux H, et al. Isolation and screening of indigenous bacteria from phosphogypsum-contaminated soils for their potential in promoting plant growth and trace elements mobilization[J]. Journal of Environmental Management, 2020, 260:110063

    Google Scholar Pub Med

    Zielonka D, Szulc W, Skowrońska M, et al. Hemp-based phytoaccumulation of heavy metals from municipal sewage sludge and phosphogypsum under field conditions[J]. Agronomy, 2020, 10(6):907

    Google Scholar Pub Med

    Chandra R, Kumar V. Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste[J]. Environmental Science and Pollution Research, 2017, 24(3):2605-2619

    Google Scholar Pub Med

    Vaverková M D, Zloch J, Adamcová D, et al. Landfill leachate effects on germination and seedling growth of hemp cultivars (Cannabis sativa L.)[J]. Waste and Biomass Valorization, 2019, 10(2):369-376

    Google Scholar Pub Med

    Antonkiewicz J, Kołodziej B, Bielińska E J. Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita[J]. International Journal of Phytoremediation, 2017, 19(4):309-318

    Google Scholar Pub Med

    Bauddh K, Singh B, Korstad J. Phytoremediation Potential of Bioenergy Plants[M]. Singapore:Springer Singapore, 2017

    Google Scholar Pub Med

    Vaverková M D, Zloch J, Adamcová D, et al. Landfill leachate effects on germination and seedling growth of hemp cultivars (Cannabis sativa L.)[J]. Waste and Biomass Valorization, 2019, 10(2):369-376

    Google Scholar Pub Med

    Sumiahadi A, Acar R. A review of phytoremediation technology:Heavy metals uptake by plants[J]. IOP Conference Series:Earth and Environmental Science, 2018, 142(1):012023

    Google Scholar Pub Med

    Ahmad R, Tehsin Z, Malik S T, et al. Phytoremediation potential of hemp (Cannabis sativa L.):Identification and characterization of heavy metals responsive genes[J]. Clean-Soil, Air, Water, 2016, 44(2):195-201

    Google Scholar Pub Med

    Vardhan K H, Kumar P S, Panda R C. A review on heavy metal pollution, toxicity and remedial measures:Current trends and future perspectives[J]. Journal of Molecular Liquids, 2019, 290:111197

    Google Scholar Pub Med

    Vareda J P, Valente A J M, Durães L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies:A review[J]. Journal of Environmental Management, 2019, 246:101-118

    Google Scholar Pub Med

    尹元萍, 舒艺周, 董文汉, 等. 连续3年施用磷石膏对红壤理化性质的影响[J]. 西南农业学报, 2016, 29(9):2187-2192 Yin Y P, Shu Y Z, Dong W H, et al. Effect of phosphorus gypsum application for three consecutive years on physical and chemical characteristics of red soil[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(9):2187-2192(in Chinese)

    Google Scholar Pub Med

    王萍, 刘静, 朱健, 等. 岩溶山区磷石膏堆场重金属迁移对耕地质量的影响及污染风险管控[J]. 水土保持通报, 2019, 39(4):294-299 Wang P, Liu J, Zhu J, et al. Impacts of heavy metal migration on quality of cultivated land and control of pollution risk in phosphogypsum yard in Karst Mountain area[J]. Bulletin of Soil and Water Conservation, 2019, 39(4):294-299(in Chinese)

    Google Scholar Pub Med

    Lieberman R N, Izquierdo M, Córdoba P, et al. The geochemical evolution of brines from phosphogypsum deposits in Huelva (SW Spain) and its environmental implications[J]. Science of the Total Environment, 2020, 700:134444

    Google Scholar Pub Med

    Vásconez-Maza M D, Bueso M C, Faz A, et al. Assessing the behaviour of heavy metals in abandoned phosphogypsum deposits combining electrical resistivity tomography and multivariate analysis[J]. Journal of Environmental Management, 2021, 278(Pt 1):111517

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2617) PDF downloads(89) Cited by(0)

Access History

Migration and Transformation of Heavy Metals in Phosphogypsum Storage Process and Their Ecological Effect

Fund Project:

Abstract: With the rapid development of the phosphorus chemical field, phosphogypsum, as a one of typical solid by-product, presents a series of characteristics such as large production capacity and large storage base with a low resource utilization rate. The treatment and disposal of the phosphogypsum have become a major challenge for phosphorus chemical enterprises to achieve sustainable development and protect public health and the environment. At present, there are few studies on the migration and transformation of harmful heavy metals in the phosphogypsum stacking process, and the variable forms of harmful components in phosphogypsum have seriously restricted its subsequent resource utilization. Based on the domestic and foreign researches on the hazardous substances in phosphogypsum, this review has analyzed and discussed the migration and transformation behavior of heavy metals in the water body, soil, crust, plant body, liquid-solid phase during phosphogypsum stacking period. At the same time, the ecological harmful effects and pathways of phosphogypsum on various environmental stages were analyzed in detail, which has provided theoretical support for the study of the pollution characteristics of heavy metals pollution in phosphogypsum and proposed possible ways to harmless and resourceful utilization.

Reference (85)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint