Davies J, Davies D. Origins and evolution of antibiotic resistance[J]. Microbiología (Madrid, Spain), 1996, 12(1):9-16
Google Scholar
Pub Med
|
Wright G D. Antibiotic resistance in the environment:A link to the clinic?[J]. Current Opinion in Microbiology, 2010, 13(5):589-594
Google Scholar
Pub Med
|
Ying G G, He L Y, Ying A J, et al. China must reduce its antibiotic use[J]. Environmental Science & Technology, 2017, 51(3):1072-1073
Google Scholar
Pub Med
|
Van Boeckel T P, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals[J]. Proceedings of the National Academy of Sciences, 2015, 112(18):5649-5654
Google Scholar
Pub Med
|
Port J A, Cullen A C, Wallace J C, et al. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments[J]. Environmental Health Perspectives, 2014, 122(3):222-228
Google Scholar
Pub Med
|
Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782
Google Scholar
Pub Med
|
World Health Organization. Antimicrobial resistance:Global report on surveillance[J]. Australasian Medical Journal, 2014, 7(4):237[8〛 World Health Organization. Global action plan on antimicrobial resistance 2015[R]. Geneva:World Health Organization, 2015
Google Scholar
Pub Med
|
Baquero F, José-Luis M, Rafael C. Antibiotics and antibiotic resistance in water environments[J]. Current Opinion in Biotechnology, 2008, 19(3):260-265
Google Scholar
Pub Med
|
Chapman J S. Disinfectant resistance mechanisms, crossresistance, and co-resistance[J]. International Biodeterioration and Biodegradation, 2003, 51(4):271-276
Google Scholar
Pub Med
|
Sidhu M S, Heir E, Sørum H, et al. Genetic linkage between resistance to quaternary ammonium compounds and beta-lactam antibiotics in food-related Staphylococcus spp.[J]. Microbial Drug Resistance, 2001, 7(4):363-371
Google Scholar
Pub Med
|
Stepanauskas R, Glenn T C, Jagoe C H, et al. Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments[J]. Environmental Science & Technology, 2005, 39(10):3671-3678
Google Scholar
Pub Med
|
Chapman J S. Biocide resistance mechanisms[J]. International Biodeterioration & Biodegradation, 2003, 51(2):133-138
Google Scholar
Pub Med
|
Bisbiroulas P, Psylou M, Iliopoulou I, et al. Adaptational changes in cellular phospholipids and fatty acid composition of the food pathogen Listeria monocytogenes as a stress response to disinfectant sanitizer benzalkonium chloride[J]. Letters in Applied Microbiology, 2011, 52(3):275-280
Google Scholar
Pub Med
|
Escalada M G. Triclosan inhibition of fatty acid synthesis and its effect on growth of Escherichia coli and Pseudomonas aeruginosa[J]. Journal of Antimicrobial Chemotherapy, 2005, 55(6):879-882
Google Scholar
Pub Med
|
Heath R J, Rubin J R, Holland D R, et al. Mechanism of triclosan inhibition of bacterial fatty acid synthesis[J]. Journal of Biological Chemistry, 1999, 274(16):11110-11114
Google Scholar
Pub Med
|
Meade M J, Waddell R L, Callahan T M. Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp. denitrificans inactivate triclosan in liquid and solid substrates[J]. FEMS Microbiology Letters, 2001, 204(1):45-48
Google Scholar
Pub Med
|
Nishihara T. Biodegradation of didecyldimethylammonium chloride by Pseudomonas fluorescens TN4 isolated from activated sludge[J]. Journal of Applied Microbiology, 2000, 88(4):641-647
Google Scholar
Pub Med
|
Zhang D F, Li H, Lin X M, et al. Characterization of outer membrane proteins of Escherichia coliin response to phenol stress[J]. Current Microbiology, 2011, 62(3):777-783
Google Scholar
Pub Med
|
Vikram A, Bomberger J M, Bibby K J. Efflux as a glutaraldehyde resistance mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa biofilms[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(6):3433-3440
Google Scholar
Pub Med
|
Webber M A, Randall L P, Cooles S, et al. Triclosan resistance in Salmonella enterica serovar typhimurium[J]. Journal of Antimicrobial Chemotherapy, 2008, 62(1):92-97
Google Scholar
Pub Med
|
Ortega Morente E, Fernández-Fuentes M A, Grande Burgos M J, et al. Biocide tolerance in bacteria[J]. International Journal of Food Microbiology, 2013, 162(1):13-25
Google Scholar
Pub Med
|
Brown N L, Camakaris J, Lee B T O, et al. Bacterial resistance to mercury and copper[J]. Journal of Cellular Biochemistry, 1991, 46(2):106-114
Google Scholar
Pub Med
|
Han X, Gu J. Sorption and transformation of toxic metals by microorganisms[M]//Mitchell R, Gu J. Environmental Microbiology. Second Edition. John Wiley & Sons, Inc., 2010:153-176
Google Scholar
Pub Med
|
Santiago A G, Chen T Y, Genova L A, et al. Adaptor protein mediates dynamic pump assembly for bacterial metal efflux[J]. Proceedings of the National Academy of Sciences, 2017, 114(26):6694-6699
Google Scholar
Pub Med
|
Baker-Austin C, Wright M S, Stepanauskas R, et al. Coselection of antibiotic and metal resistance[J]. Trends in Microbiology, 2006, 14(4):176-182
Google Scholar
Pub Med
|
Gnanadhas D P, Marathe S A, Chakravortty D. Biocidesresistance, cross-resistance mechanisms and assessment[J]. Expert Opinion on Investigational Drugs, 2013, 22(2):191-206
Google Scholar
Pub Med
|
Pal C, Asiani K, Arya S, et al. Metal resistance and its association with antibiotic resistance[J]. Advances in Microbial Physiology, 2017, 70:261-313
Google Scholar
Pub Med
|
Cheung K C, Poon B H T, Lan C Y, et al. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China[J]. Chemosphere, 2003, 52(9):1431-1440
Google Scholar
Pub Med
|
Liu W X, Li X D, Shen Z G, et al. Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary[J]. Environmental Pollution, 2003, 121(3):377-388
Google Scholar
Pub Med
|
吴兴让,尹平河,赵玲,等.珠江广州段微表层和次表层水中重金属分布与风险的初步评价[J].暨南大学学报:自然科学版, 2010, 31(1):84-88
Wu X R, Yin P H, Zhao L, et al. Health risk assessment of heavy metals in the water of surface and subsurface microlayers from Guangzhou section of Pearl River[J]. Journal of Jinan University:Natural Science, 2010, 31(1):84-88(in Chinese)
Google Scholar
Pub Med
|
Zhao J L, Zhang Q Q, Chen F, et al. Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools:Implications for controlling of urban domestic sewage discharge[J]. Water Research, 2013, 47(1):395-405
Google Scholar
Pub Med
|
Rouch D A, Cram D S, Diberardino D, et al. Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus:Common ancestry with tetracycline-and sugartransport proteins[J]. Molecular Microbiology, 2010, 4(12):2051-2062
Google Scholar
Pub Med
|
Chopra I. Tetracycline antibiotics:Mode of action, applications, molecular biology, and epidemiology of bacterial resistance[J]. Microbiology and Molecular Biology Reviews, 2001, 65(2):232-260
Google Scholar
Pub Med
|
Schmitz F J, Sadurski R, Kray A, et al. Prevalence of macrolide-resistance genes in Staphylococcus aureus and Enterococcus faecium isolates from 24 European university hospitals[J]. Journal of Antimicrobial Chemotherapy, 2000, 45(6):891-894
Google Scholar
Pub Med
|
Weisblum B. Erythromycin resistance by ribosome modification[J]. Antimicrob Agents and Chemother, 1995, 39(3):577-585
Google Scholar
Pub Med
|
Leclercq R, Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification.[J]. Antimicrobial Agents and Chemotherapy, 1991, 35(7):1267-1272
Google Scholar
Pub Med
|
Cagliero C, Mouline C, Cloeckaert A, et al. Synergy between efflux pump CmeABC and modifications in ribosomal proteins L4 and L22 in conferring macrolide resistance in Campylobacter jejuni and Campylobacter coli[J]. Antimicrobial Agents and Chemotherapy, 2006, 50(11):3893-3896
Google Scholar
Pub Med
|
Muñoz M C C, Benomar N, Ennahar S, et al. Comparative proteomic analysis of a potentially probiotic Lactobacillus pentosus MP-10 for the identification of key proteins involved in antibiotic resistance and biocide tolerance[J]. International Journal of Food Microbiology, 2016, 222:8-15
Google Scholar
Pub Med
|
Chapman J S. Disinfectant resistance mechanisms, crossresistance, and co-resistance[J]. International Biodeterioration and Biodegradation, 2003, 51(4):271-276
Google Scholar
Pub Med
|
Buffet-Bataillon S, Le Jeune A, Le Gall-David S, et al. Molecular mechanisms of higher MICs of antibiotics and quaternary ammonium compounds for Escherichia coli isolated from bacteraemia[J]. Journal of Antimicrobial Chemotherapy, 2012, 67(12):2837-2842
Google Scholar
Pub Med
|
Zhang H, Ma Y, Liu P, et al. Multidrug resistance operon emrAB contributes for chromate and ampicillin co-resistance in a Staphylococcus strain isolated from refinery polluted river bank[J]. SpringerPlus, 2016, 5(1):1648
Google Scholar
Pub Med
|
Fang L, Li X, Li L, et al. Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals[J]. Scientific Reports, 2016, 6:25312
Google Scholar
Pub Med
|
Sandegren L, Linkevicius M, Lytsy B, et al. Transfer of an Escherichia coli ST131 multiresistance cassette has created a Klebsiella pneumoniae-specific plasmid associated with a major nosocomial outbreak[J]. Journal of Antimicrobial Chemotherapy, 2011, 67(1):74-83
Google Scholar
Pub Med
|
Schwaiger K, Harms K S, Bischoff M, et al. Insusceptibility to disinfectants in bacteria from animals, food and humans-Is there a link to antimicrobial resistance?[J]. Frontiers in Microbiology, 2014, 5:88
Google Scholar
Pub Med
|
Chuanchuen R, Beinlich K, Hoang T T, et al. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps:Exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ[J]. Antimicrobial Agents and Chemotherapy, 2001, 45(2):428-432
Google Scholar
Pub Med
|
Webber M A, Buckner M M C, Redgrave L S, et al. Quinolone-resistant gyrase mutants demonstrate decreased susceptibility to triclosan[J]. Journal of Antimicrobial Chemotherapy, 2017, 72(10):2755-2763
Google Scholar
Pub Med
|
Lin J, Michel L O, Zhang Q. CmeABC functions as a multidrug efflux system in Campylobacter jejuni[J]. Antimicrobial Agents and Chemotherapy, 2002, 46(7):2124-2131
Google Scholar
Pub Med
|
Pumbwe L, Randall L P, Woodward M J, et al. Evidence for multiple-antibiotic resistance in Campylobacter jejuni not mediated by CmeB or CmeF[J]. Antimicrobial Agents and Chemotherapy, 2005, 49(4):1289-1293
Google Scholar
Pub Med
|
Conroy O, Kim E H, Mcevoy M M, et al. Differing ability to transport nonmetal substrates by two RND-type metal exporters[J]. FEMS Microbiology Letters, 2010, 308(2):115-122
Google Scholar
Pub Med
|
Schweizer H P. Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux:Application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems[J]. Antimicrobial Agents and Chemotherapy, 1998, 42(2):394-398
Google Scholar
Pub Med
|
Nishino K, Nikaido E, Yamaguchi A. Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium[J]. Journal of Bacteriology, 2007, 189(24):9066-9075
Google Scholar
Pub Med
|
Shahcheraghi F, Minato Y, Chen J, et al. Molecular cloning and characterization of a multidrug efflux pump, SmfY, from Serratia marcescens[J]. Biological and Pharmaceutical Bulletin, 2007, 30(4):798-800
Google Scholar
Pub Med
|
Langsrud S, Sundheim G, Holck A L. Cross-resistance to antibiotics of Escherichia coli adapted to benzalkonium chloride or exposed to stress-inducers[J]. Journal of Applied Microbiology, 2004, 96(1):201-208
Google Scholar
Pub Med
|
Navarre W W, Halsey T A, Walthers D, et al. Co-regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ[J]. Molecular Microbiology, 2005, 56(2):492-508
Google Scholar
Pub Med
|
Perron K, Caille O, Rossier C, et al. CzcR-CzcS, a twocomponent system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa[J]. Journal of Biological Chemistry, 2004, 279(10):8761-8768
Google Scholar
Pub Med
|
Balasubramanian D, Kong K F, Jayawardena S R, et al. Co-regulation of β-lactam resistance, alginate production and quorum sensing in Pseudomonas aeruginosa[J]. Journal of Medical Microbiology, 2011, 60(2):147-156
Google Scholar
Pub Med
|
Lu J, Jin M, Nguyen S H, et al. Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation[J]. Environment International, 2018, 118:257-265
Google Scholar
Pub Med
|
Chen S, Li X, Sun G, et al. Heavy metal induced antibiotic resistance in bacterium LSJC7[J]. International Journal of Molecular Sciences, 2015, 16(10):23390-23404
Google Scholar
Pub Med
|
Flach C F, Pal C, Svensson C J, et al. Does antifouling paint select for antibiotic resistance?[J]. Science of the Total Environment, 2017, 590:461-468
Google Scholar
Pub Med
|
Zhang M, Chen L, Ye C, et al. Co-selection of antibiotic resistance via copper shock loading on bacteria from a drinking water bio-filter[J]. Environmental Pollution, 2018, 233:132-141
Google Scholar
Pub Med
|
Xu Y, Xu J, Mao D, et al. Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale[J]. Environmental Pollution, 2017, 220:900-908
Google Scholar
Pub Med
|
Kang W, Zhang Y J, Shi X, et al. Short-term copper exposure as a selection pressure for antibiotic resistance and metal resistance in an agricultural soil[J]. Environmental Science and Pollution Research, 2018, 25(29):29314-29324
Google Scholar
Pub Med
|
Zhang S, Wang Y, Song H, et al. Copper nanoparticles and copper ions promote horizontal transfer of plasmidmediated multi-antibiotic resistance genes across bacterial genera[J]. Environment International, 2019, 129:478-487
Google Scholar
Pub Med
|
Zhang Y, Gu A Z, Cen T, et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment[J]. Environmental Pollution, 2018, 237:74-82
Google Scholar
Pub Med
|
Rizzotti L, Rossi F, Torriani S. Biocide and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from the swine meat chain[J]. Food Microbiology, 2016, 60:160-164
Google Scholar
Pub Med
|
Khan S, Beattie T K, Knapp C W. Relationship between antibiotic-and disinfectant-resistance profiles in bacteria harvested from tap water[J]. Chemosphere, 2016, 152:132-141
Google Scholar
Pub Med
|
Oggioni M R, Coelho J R, Furi L, et al. Significant differences characterise the correlation coefficients between biocide and antibiotic susceptibility profiles in Staphylococcus aureus[J]. Current Pharmaceutical Design, 2015, 21(16):2054
Google Scholar
Pub Med
|
Fahimipour A K, Ben Mamaar S, Mcfarland A G, et al. Antimicrobial chemicals associate with microbial function and antibiotic resistance indoors[J]. mSystems, 2018, 3(6):e00200-18
Google Scholar
Pub Med
|
Liu S S, Qu H M, Yang D, et al. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant[J]. Water Research, 2018, 136:131-136
Google Scholar
Pub Med
|
Hernández A, Ruiz F M, Romero A, et al. The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia[J]. PLoS Pathogens (Online), 2011, 7(6):e1002103
Google Scholar
Pub Med
|
Webber M A, Whitehead R N, Mount M, et al. Parallel evolutionary pathways to antibiotic resistance selected by biocide exposure[J]. Journal of Antimicrobial Chemotherapy, 2015, 70(8):2241-2248
Google Scholar
Pub Med
|
Li D, Zeng S, He M, et al. Water disinfection byproducts induce antibiotic resistance-role of environmental pollutants in resistance phenomena[J]. Environmental Science & Technology, 2016, 50(6):3193-3201
Google Scholar
Pub Med
|
Li M, He Y, Sun J, et al. Chronic exposure to an environmentally relevant triclosan concentration induces persistent triclosan resistance but reversible antibiotic tolerance in Escherichia coli[J]. Environmental Science & Technology, 2019, 53(6):3277-3286
Google Scholar
Pub Med
|
Jutkina J, Marathe N P, Flach C F, et al. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations[J]. Science of the Total Environment, 2018, 616:172-178
Google Scholar
Pub Med
|