Loading [MathJax]/jax/output/HTML-CSS/jax.js

WANG Chao, JIANG Yihan, LI Peng, ZHANG Jingxin, HE Yiliang. Fluorescence detection of lead ions in water and its effect analysis based on CDs@MIL-101-NH2 composite[J]. Chinese Journal of Environmental Engineering, 2022, 16(9): 3031-3040. doi: 10.12030/j.cjee.202203041
Citation: WANG Chao, JIANG Yihan, LI Peng, ZHANG Jingxin, HE Yiliang. Fluorescence detection of lead ions in water and its effect analysis based on CDs@MIL-101-NH2 composite[J]. Chinese Journal of Environmental Engineering, 2022, 16(9): 3031-3040. doi: 10.12030/j.cjee.202203041

Fluorescence detection of lead ions in water and its effect analysis based on CDs@MIL-101-NH2 composite

  • Corresponding author: LI Peng, lipeng2016@sjtu.edu.cn
  • Received Date: 04/03/2022
    Available Online: 30/09/2022
  • To investigate the performance of fluorometric detection for lead ions by CDs@MIL-101-NH2(Fe) and fluorescence quenching mechanism, carbon dots (N, S, I-CDs)-modified MIL-101-NH2(Fe) composite was prepared by hydrothermal method and was characterized by TEM, XRD, FT-IR and XPS. The results show that: CDs@MIL-101-NH2 composite was successfully prepared by hydrothermal method , and the introduction of carbon dots did not have a large effect on the MIL-101-NH2 structure, and the amino group modified the MOF framework; CDs@MIL-101-NH2 composite presented the highest fluorescence intensity at an excitation wavelength of 340 nm, an emission wavelength of 436 nm, dosage of 10 mg·L−1, and pH 7; CDs@MIL-101-NH2 fluorescent probe could fluorescently respond to lead ions in water with good selectivity and good fitting (R2=0.9988) within 1.22~500 µmol·L−​​​​​​​1, the detection limit was 1.22 µmol·L−​​​​​​​1. The fluorescence quenching occurred when the fluorescent probe combined with lead ions through the interaction between the amino group on the composite and lead ions, and the fluorescent carbon dot modification improved the performance of MIL-101-NH2 on detecting lead ions in water. During the detection of lead ions in the actual water samples, the sample recovery rates ranged from 97.24% to 106.16% with the relative standard deviations of RSD<4%, indicating that this novel CDs@MIL-101-NH2 composite can be used to test lead ions in water through fluorometric method. The results of this study can provide a new idea for the design and preparation of sensitive and efficient fluorescent probes, and also provide a reference for the further development and application of convenient in situ fluorescence methods for lead ions detection.
  • 城市污水再生利用是缓解城市缺水问题、改善城市水环境质量的重要措施[1]。再生水作为“城市第二水源”已越来越被公众接受,并在很多城市得以倡导[2]。2016年,《中华人民共和国水法(2016修正)》中多次提到,加强城镇污水集中处理,并鼓励使用回用水,提高回用水利用率[2]

    安康市位于汉江上游,汉江在安康境内干流长度为346 km。这段干流流域是南水北调中线工程的核心水源涵养区,承担着“一江清水供津京”重任,因此,安康市的水质保护工作意义重大。近年来,随着城区人口增多,配套市政设施日益完善,污水量随之增大,位于安康市江南片区的江南污水处理厂处理容量将达极限,急需开展污水处理厂的升级改造工作。该污水处理厂所在位置为城区金州广场北侧,周边建筑密集,已无拓展用地,很难实施水质提标改造或进行处理规模的扩展。同时,该厂的地表污水处理、设备运行产生的噪声已影响到周边区域的发展。依据创建“自然环境与人工环境共生”生态型城市的理念,结合本市的发展规划,安康市对原江南污水处理厂进行迁址,并扩能重建为江南再生水厂。

    江南再生水厂为地下式再生水厂。水厂上方建设水生态公园与水环境科普馆,具有环境友好、节约土地、资源再利用等特点[3]。水厂自建成以来,运行稳定,出水水质达标。在2020年新冠肺炎疫情爆发期间,再生水厂切断了病毒与自然水体、环境的接触,凸显了地下式再生水厂在应对突发公共卫生事件中的优势。本文旨在解构江南再生水厂工程中各主要处理构筑物的设计参数,分析工程工艺和运行效果,为西北地区类似污水再生工程的改造设计提供参考。

    安康市江南再生水厂设计规模8×104 m3·d−1,近期设备安装规模6×104 m3·d−1,其中再生水规模1.2×104 m3·d−1。再生水厂采用“改良A2O工艺+矩形沉淀池+高效沉淀池+反硝化滤池”工艺,并采用高效生物复合除臭与污泥低温干化等先进技术。出水标准执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准[4]。其中,COD、氨氮可达到地表水Ⅳ类水标准。处理后的再生水可用于城市景观用水等。

    传统的地上式再生水厂的建设应满足《城市排水工程规划规范》(GB50318-2000)的卫生防护距离要求,以避免潜在的臭味、噪音污染,以及与周边自然景观不协调等问题[5-6]。为不影响周边建设用地的生产发展,与汉江水环境、自然景观相协调,江南再生水厂采用地下式建设方案。本项目处理规模8.0×104 m3·d−1,占地6.8×104 m2,为传统地上式再生水厂占地面积的2/3。由于该项目为地下式再生水厂,工程建设时无需考虑绿化及隔离带等要求,节省了卫生防护用地。江南再生水厂生态综合体的建设效果图及实景照片见图1

    图 1  江南再生水厂生态综合体
    Figure 1.  Renderings of the ecological complex construction at the Jiangnan reclaimed water plant

    该厂为西北地区第一座地下式再生水厂。地下式再生水厂具有节约土地资源,节省管网投资,视觉、噪声和臭气污染小,运行稳定、方便回收利用余热,利用地上景观设计提升周边土地价值等优点[6-7]。水厂的地面部分建设主题公园和水环境科普馆,可用于普及水环境科学知识,传播绿色发展理念,满足公众对高质量环保科普产品和科普服务水平的需求[8-9]。余热利用单元亦是地下式再生水厂的一大优势。采用污水源热泵空调机组利用低品位热源——污水作为冷热源,可实现冬季采暖和夏季制冷,充分利用污水中的热量;使用过程中没有燃煤、燃气等锅炉房的燃烧,也避免了排烟污染,充分体现了该厂“绿色工程”的形象。

    本项目采用实测法及类比法进行水质分析论证,综合分析原江南污水厂台账,将再生水厂设计进、出水水质及处理率数据汇总,见表1

    表 1  设计进出水水质及处理率
    Table 1.  Designed water quality and treatment rate of at the inlet and outlet
    水质指标进水水质/
    (mg·L−1)
    出水水质/
    (mg·L−1)
    处理率/%
    BOD51201091.7
    COD3503091.4
    TN601575
    TP60.591.6
    NH3-N401.596.3
    SS2001095
      注:COD与NH3-N执行地表水Ⅳ类水标准,其余指标执行《城镇污水处理厂污染物排放标准》GB18918-2002中一级标准的A级标准。
     | Show Table
    DownLoad: CSV

    江南再生水厂的污水生化处理流程采用“改良A2O+悬浮填料”工艺。悬浮填料上的生物膜和悬浮活性污泥共同去除水中的污染物;辅以HERO高效复合生物技术进行臭味处理;采用“紫外线消毒+次氯酸钠消毒”技术进行消毒,确保出水安全。厂区的地面部分为生态休闲公园,可解决“邻避效应”以提升周边土地价值。利用水源热泵技术,可将污水处理过程中的能量进行交换利用;利用绿色低碳污水源热泵技术生态节能,充分利用污水中的热能,实现采暖制冷过程不耗电,且满足周边市政建筑的制冷与供热。具体工艺流程图见图2

    图 2  江南再生水厂的工艺流程图
    Figure 2.  Process flow chart of the Jiangnan reclaimed water plant

    基于进水水质和出水标准的要求,再生水厂工程对BOD5、COD、SS、TN、TP和NH3-N等指标对应污染物的去除率至少达到91.7%、91.4%、95%、75%、91.6%和96.3%。这说明,不仅要求BOD5、COD、SS等指标对应污染物去除率较高,对TN、TP、NH3-N等指标也提出了严格的控制要求,即需要在去除常规污染物的基础上增加脱氮除磷工艺。与传统工艺相比,“改良A2/O+悬浮填料”工艺结合了传统活性污泥法及生物接触氧化法的优点,弥补了2种工艺的不足,耐冲击负荷能力更强,污染物去除效果更好,氧气利用率更高,主要特点总结如下。

    1)耐冲击性强,性能稳定,运行可靠。冲击负荷及温度变化对流化填料的影响要远远小于对传统活性污泥法的影响。生物膜对污水中成分变化,或污水毒性增加的耐受力较强。

    2)容积负荷高,紧凑省地。容积负荷取决于生物填料的有效比表面积。不同填料的比表面积相差很大,变化范围为500~1 200 m2·m−3,可适应不同预处理要求和应用情况。

    3)工艺参数可灵活变化。本工艺可灵活选择不同填料填充率,以达到在无需增大池容的前提下兼顾处理效率及远期扩大处理规模的需求。

    4)使用寿命长。优质耐用的生物填料及出水装置可保证整个系统长期使用,而无需频繁更换,折旧率低。

    江南再生水厂的主要构筑物有[10]:粗格栅井及提升泵房、细格栅渠及曝气沉砂池、精细格栅、生化池、二沉池、高效沉淀池、反硝化滤池及臭氧接触池。各单元设计工艺见表2

    表 2  各处理单元设计参数
    Table 2.  Design parameters of each treatment process unit
    处理单元构筑物尺寸/(m×m×m)数量工艺设计参数
    预处理单元进水井及粗格栅17.8×16.9×(18.6+6.0)1座动轨式格栅除污机近期2台,远期增加1台,栅隙宽b=15 mm;设计单渠宽1 000 mm,栅条间隙15 mm
    提升泵房16.9×14.9×(22.4+6.0)1座3台进水提升大泵流量为1 100 m3/h,扬程为15.5 m,2台小泵流量为
    590 m3/h,扬程为15.5 m
    细格栅14.5×11.0×(3.0+6.0)1座2套阶梯式网板细格栅,1套人工格栅,格栅栅隙5 mm,渠宽1.7 m
    曝气沉砂池28.0×15.0×(5.5+6.0)1座水力停留时间HRT=7 min,有效水深H=2.8 m
    精细格栅14.0×10.0×(3.55+6.0)1座设计渠宽1 800 mm,格栅栅隙为2 mm,格栅安装倾角为90°,栅前水深为1.76 m
    生物处理单元生化池95×74.7×(9.2+5.5)4座由预缺氧池、厌氧池、缺氧池、好氧池组合。总水力停留时间13.5 h,混合液MLSS含量4.0 g·L−1,污泥负荷0.065 kg,污泥回流比0~100%,混合液回流比100%~200%
    二沉池42.2×82.5×(6.15+4.5)4组表面负荷为1.13 m3·(m2·h)−1,回流污泥浓度8.0 g·L−1,有效水深4.80 m
    深度处理单元高效沉淀池20.7×46.2×(7.1+5.5)2座混合池的反应时间3 min,絮凝池的反应时间10 min,沉淀区清水区高度1.0 m,污泥回流比3%~5%
    反硝化滤池62.95×16.4×(7.1+5.5)6组反冲洗周期12~24 h,混合时间40 s
    臭氧接触池32.6×22.2×(7.75+5.5)1座臭氧接触时间:30 min,臭氧投加量为10 mg·L−1
     | Show Table
    DownLoad: CSV

    江南再生水厂全厂污水处理构筑物区域采用组合式布置[11-12],组合体采用半地下式结构设计,顶部主要用于环保科普,中间层为操作层,下部为水池[12]。水厂上方建设水生态公园与水环境科普馆,集水质净化、生态景观、休闲运动、科普教育为一体[13]。根据工艺流程及场地功能,把全厂分为2个部分:生产管理区和生产处理区。考虑到防洪要求及周边道路的地面标高,厂区的场地设计标高定为247.5 m。江南再生水厂总平面布置图如图3

    图 3  总平面布置图
    Figure 3.  General layout

    以污水作为提取和储存能量的介质,借助热泵机组的循环热交换,将污水中的低品位热能转换为高品位热能,用于采暖或制冷,以减少电能的消耗。采暖和制冷服务主要供给该厂的综合楼。工程主要设备包括热泵机组、污水专用宽流道换热器、污水泵、中介循环泵、系统水循环泵、软化水设备、水箱等,机组及相关设备设在热泵机房。热泵机组设置2台,不设备用机组,每台机组负荷率按65%考虑。当其中1台机组发生故障时,另1台机组可满足65%负荷进行供冷供热,符合设计规范要求。污水泵由工艺专业选配,选用潜污泵2用1备,将中水送到热泵机房,经换热器后回到清水池下游。综合楼的面积为2 500 m2,对该建筑的采暖热负荷及空调冷负荷采用冷热指标进行估算。根据空调的冷指标(110 W·m−2)热指标(120 W·m−2),分别得到冷负荷为330 000 W,热负荷为360 000 W。

    表 3  综合楼的采暖热负荷和空调冷负荷参数
    Table 3.  Heating and cooling load parameters of the complex building
    面积/m2冷指标/(W·m−2)冷负荷/W热指标/(W·m−2)热负荷/W
    2 500110330 000120360 000
     | Show Table
    DownLoad: CSV

    根据计算,每天每处理1×104 t污水,对应热泵机组可提供约5 000 kW的热量。污水处理量以1.2×104 m3·d−1计,采暖季120 d,标准煤发热29 307 kJ·kg−1,锅炉效率0.8,制热能效比(COP)取4,生产1 kW·h电标准煤耗量0.33 kg,因此,煤耗量计算如下。

    采暖季总供热量:Q=5000×1.2×24×3600×120=6.2×1010kJ

    采用锅炉供暖的标准煤耗量:Q=6.2×1010kJ0.8×29307kJkg1=2644.4t

    采用热泵供暖耗电量:Q=6.2×1010kJ3600×4=4.31×106kWh

    采用热泵供暖的标煤耗量:G=4.31×106kWh×0.33kg(kWh)1=1422.3t

    综上所述,整个采暖季采用热泵供暖可节约标准煤耗量为:2644.41422.3=1222.1 t。

    根据工程投资估算,建设项目总投资5.878 0×104万元。其中:工程费4.288 3×104万元、建设项目其他费用1.136 7×104万元、基本预备费2.401×103万元、建设期利息1. 967×103万元,铺底流动资金为162.00万元;再生水厂工程平均年处理总成本费用5.999×103万元;平均年经营成本费用3.350×103万元。本项目运行成本为每吨水1.60元。据市场行情计算,污水源热泵采暖成本为1元·m−2,运营成本约在15元·m−2,市政供暖按供热面积收费标准25元·m−2计算,则采用污水源热泵供暖可节约36%的成本。

    该工程自2018年8月开工建设,2019年10月正式投产运营,自投入运行至今,安全稳定运行、出水稳定达标、除臭效果显著。该厂实际进、出水水质及处理率见表4

    表 4  实际进出水水质
    Table 4.  Actual water quality of influent and effluent sewage
    水质指标进水水质/(mg·L−1)进水水质/(mg·L−1)处理率/%
    BOD51286.594.9
    COD3321994.3
    TN595.890.2
    TP5.80.1896.9
    NH3-N390.3599.1
    SS286697.9
     | Show Table
    DownLoad: CSV

    实际运行数据表明,江南再生水厂的出水水质能稳定达到《城镇污水处理厂污染物排放标准》GB18918-2002中一级标准的A级标准。各种污染物指标的去除率均达到90%以上,其中氨氮的去除效率最高,可达99.1%。以2020年为例,该厂进出水COD、氨氮、总磷、总氮,以及去除率如图4所示。由图4可知,经该厂处理后的出水COD、氨氮、总磷、总氮等指标大幅下降,平均降低90%以上,去除效果明显,超额完成设计处理率,出水水质达标。

    图 4  2020年进出水水质指标的变化
    Figure 4.  Variation of water quality of influent and effluent in 2020

    江南再生水厂采用地下式再生水生产技术,不仅实现了传统污水处理厂的功能,而且避免了占地、臭气、噪声等“邻避效应”[14]。该工程将污水处理设施与地上生态环境有机结合,并通过污水余热利用实现了热量的回收,节约了传统化石燃料的消耗,打造成以地下式再生水厂为核心的新型生态综合体。该厂的建成充分体现了绿色环保理念,对改善安康城市水环境质量、提升城市人居环境、提升城市品味、确保汉江水质稳定达标具有重要意义,可为同类再生水厂的建设提供参考。

  • [1] NAG R, CUMMINS E. Human health risk assessment of lead (Pb) through the environmental-food pathway[J]. Science of the Total Environment, 2021, 15: 1168-1182.

    Google Scholar Pub Med

    [2] LOU J, JIN L, WU N, et al. DNA damage and oxidative stress in human B lymphoblastoid cells after combined exposure to hexavalent chromium and nickel compounds[J]. Food and Chemical Toxicology, 2013, 55: 535-540.

    Google Scholar Pub Med

    [3] LI X, ZHANG B, LI N, et al. Zebrafish neurobehavioral phenomics applied as the behavioral warning methods for fingerprinting endocrine disrupting effect by lead exposure at environmentally relevant level[J]. Chemosphere, 2019, 231: 315-325. doi: 10.1016/j.chemosphere.2019.05.146

    CrossRef Google Scholar Pub Med

    [4] CLEMENS S, MA J F. Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annual Review of Plant Biology, 2016, 67: 489-512. doi: 10.1146/annurev-arplant-043015-112301

    CrossRef Google Scholar Pub Med

    [5] 中华人民共和国国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838-2002[S]. 北京: 中国环境科学出版社, 2003.

    Google Scholar Pub Med

    [6] 蔡良圣, 林君, 辛青, 等. 电化学传感器监测水中痕量铜离子[J]. 中国环境科学, 2020, 40(8): 3394-3400. doi: 10.3969/j.issn.1000-6923.2020.08.017

    CrossRef Google Scholar Pub Med

    [7] YAN S R, FOROUGHI M M, SAFAEI M, et al. A review: Recent advances in ultrasensitive and highly specific recognition aptasensors with various detection strategies[J]. International Journal of Biological Macromolecules, 2020, 155: 184-207. doi: 10.1016/j.ijbiomac.2020.03.173

    CrossRef Google Scholar Pub Med

    [8] SARFO D K, IZAKE E L, OʹMULLANE A P, et al. Molecular recognition and detection of Pb(II) ions in water by aminobenzo-18-crown-6 immobilised onto a nanostructured SERS substrate[J]. Sensors and Actuators B:Chemical, 2018, 255: 1945-1952. doi: 10.1016/j.snb.2017.08.223

    CrossRef Google Scholar Pub Med

    [9] OZDEMIR M. A novel chromogenic molecular sensing platform for highly sensitive and selective detection of Cu2+ ions in aqueous environment[J]. Journal of Photochemistry & Photobiology A:Chemistry, 2019, 369: 54-69.

    Google Scholar Pub Med

    [10] NAIK L, MARIDEVARMATH C V, THIPPESWAMY M S, et al. A highly selective and sensitive thiophene substituted 1, 3, 4-oxadiazole based turn-off fluorescence chemosensor for Fe2+ and turn on fluorescence chemosensor for Ni2+ and Cu2+ detection[J]. Materials Chemistry and Physics, 2021, 260: 63-75.

    Google Scholar Pub Med

    [11] HE Y B, ZHOU W, QIAN G D, et al. Methane storage in metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43: 5657-5679. doi: 10.1039/C4CS00032C

    CrossRef Google Scholar Pub Med

    [12] RAZAVI S A A, MASOOMI M Y, ISLAMOGLU T, et al. Improvement of methane-framework interaction by controlling pore size and functionality of pillared MOFs[J]. Inorganic Chemistry, 2017, 56: 2581-2588. doi: 10.1021/acs.inorgchem.6b02758

    CrossRef Google Scholar Pub Med

    [13] RAZAVI S A A, MASOOMI A. Function-structure relationship in metal-organic frameworks for mild, green, and fast catalytic C-C bond formation[J]. Inorganic Chemistry, 2019, 58: 14429-14439. doi: 10.1021/acs.inorgchem.9b01819

    CrossRef Google Scholar Pub Med

    [14] MOROZAN A, JAOUEN F. Metal organic frameworks for electrochemical applications[J]. Energy & Environmental Science, 2012, 5: 9269-9290.

    Google Scholar Pub Med

    [15] RAZAVI S A A, MORSALI A. Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap[J]. Coordination Chemistry Reviews, 2020, 415: 213299-213342. doi: 10.1016/j.ccr.2020.213299

    CrossRef Google Scholar Pub Med

    [16] 李孜旋. 荧光功能NH2-MIL-53(Al)纳米片及其复合材料用于水中离子检测研究[D]. 合肥: 中国科学技术大学, 2021.

    Google Scholar Pub Med

    [17] LIU Y, MA L N, SHI W J, et al. Four alkaline earth metal (Mg, Ca, Sr, Ba)-based MOFs as multiresponsive fluorescent sensors for Fe3+, Pb2+ and Cu2+ ions in aqueous solution[J]. Journal of Solid State Chemistry, 2019, 227: 636-647.

    Google Scholar Pub Med

    [18] LI L, CHEN Q, NIU Z G, et al. Lanthanide metal-organic frameworks assembled from a fluorene-based ligand: selective sensing of Pb2+ and Fe3+ ions[J]. Journal of Materials Chemistry C, 2016, 4: 1900-1905. doi: 10.1039/C5TC04320D

    CrossRef Google Scholar Pub Med

    [19] HAO J, LIU F, LIU N, et al. Ratiometric fluorescent detection of Cu2+ with carbon dots chelated Eu-based metal-organic frameworks[J]. Sensor and Actuators B:Chemical, 2017, 245: 641-647. doi: 10.1016/j.snb.2017.02.029

    CrossRef Google Scholar Pub Med

    [20] XU X, YAN B. Fabrication and application of a ratiometric and colorimetric fluorescent probe for Hg2+ based on dual-emissive metaleorganic framework hybrids with carbon dots and Eu3+[J]. Journal of Materials Chemistry C, 2016, 4: 1543-1549. doi: 10.1039/C5TC04002G

    CrossRef Google Scholar Pub Med

    [21] WANG H, YAN B. N-GQDs and Eu3+ co-encapsulated anionic MOFs: Two-dimensional luminescent platform for decoding benzene homologues[J]. Dalton Transactions, 2017, 46(21): 7098-7105. doi: 10.1039/C7DT01352C

    CrossRef Google Scholar Pub Med

    [22] YAO C, XU Y, XIA Z. A carbon dot-encapsulated UiO-type metal organic framework as a multifunctional fluorescent sensor for temperature, metal ion and pH detection[J]. Journal of Materials Chemistry C, 2018, 6(16): 4396-4399. doi: 10.1039/C8TC01018H

    CrossRef Google Scholar Pub Med

    [23] BANERJEE D, HU Z C, LI J. Luminescent metal-organic frameworks as explosive sensors[J]. Dalton Transactions, 2014, 43: 10668-10685. doi: 10.1039/C4DT01196A

    CrossRef Google Scholar Pub Med

    [24] LV S W, LIU J M, LI C Y, et al. A novel and universal metal-organic frameworks sensing platform for selective detection and efficient removal of heavy metal ions[J]. Chemical Engineering Journal, 2019, 375: 122111-122121. doi: 10.1016/j.cej.2019.122111

    CrossRef Google Scholar Pub Med

    [25] DUAN M, GUAN Z, MA Y J, et al. A novel catalyst of MIL-101(Fe) doped with Co and Cu as persulfate activator: Synthesis, characterization, and catalytic performance[J]. Chemical Papers, 2018, 72: 235-250. doi: 10.1007/s11696-017-0276-7

    CrossRef Google Scholar Pub Med

    [26] FAZAELI R, ALIYAN H, MOGHADAM, et al. Nano-rod catalysts: Building MOF bottles (MIL-101 family as heterogeneous single-site catalysts) around vanadium oxide ships[J]. Journal of Molecular Catalysis A:Chemical, 2013, 374-375: 46-52. doi: 10.1016/j.molcata.2013.03.020

    CrossRef Google Scholar Pub Med

    [27] MU Z, HUA J H, YANG Y L. N, S, I co-doped carbon dots for folic acid and temperature sensing and applied to cellular imaging[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 224: 117444-117453. doi: 10.1016/j.saa.2019.117444

    CrossRef Google Scholar Pub Med

    [28] HASAN Z, KHAN N A, JHUNG S H. Adsorptive removal of diclofenac sodium from water with Zr-based metal-organic frameworks[J]. Chemical Engineering Journal, 2016, 284: 1406-1413. doi: 10.1016/j.cej.2015.08.087

    CrossRef Google Scholar Pub Med

    [29] WU L, ZHANG X F, LI Z Q, et al. A new sensor based on amino-functionalized zirconium metal-organic framework for detection of Cu2+ in aqueous solution[J]. Inorganic Chemistry Communications, 2016, 74: 22-25. doi: 10.1016/j.inoche.2016.10.031

    CrossRef Google Scholar Pub Med

    [30] 王雨霏. 碳点@ZIF-8复合材料的制备与性能研究[D]. 长春: 吉林大学, 2021.

    Google Scholar Pub Med

    [31] 胥静. 镧系金属有机框架材料的合成及其在荧光传感中的应用[D]. 南充: 西华师范大学, 2020.

    Google Scholar Pub Med

    [32] LI B Z, SUO T Y, XIE S Y, et al. Rational design, synthesis, and applications of carbon dots@metal-organic frameworks (CD@MOF) based sensors[J]. Trends in Analytical Chemistry, 2021, 135: 116163. doi: 10.1016/j.trac.2020.116163

    CrossRef Google Scholar Pub Med

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0501234Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionDOWNLOAD: 5.1 %DOWNLOAD: 5.1 %FULLTEXT: 89.6 %FULLTEXT: 89.6 %META: 5.3 %META: 5.3 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 99.7 %其他: 99.7 %上海: 0.2 %上海: 0.2 %石家庄: 0.2 %石家庄: 0.2 %其他上海石家庄Highcharts.com
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)  /  Tables(2)

Article Metrics

Article views(5454) PDF downloads(50) Cited by(0)

Access History

Fluorescence detection of lead ions in water and its effect analysis based on CDs@MIL-101-NH2 composite

Abstract: To investigate the performance of fluorometric detection for lead ions by CDs@MIL-101-NH2(Fe) and fluorescence quenching mechanism, carbon dots (N, S, I-CDs)-modified MIL-101-NH2(Fe) composite was prepared by hydrothermal method and was characterized by TEM, XRD, FT-IR and XPS. The results show that: CDs@MIL-101-NH2 composite was successfully prepared by hydrothermal method , and the introduction of carbon dots did not have a large effect on the MIL-101-NH2 structure, and the amino group modified the MOF framework; CDs@MIL-101-NH2 composite presented the highest fluorescence intensity at an excitation wavelength of 340 nm, an emission wavelength of 436 nm, dosage of 10 mg·L−1, and pH 7; CDs@MIL-101-NH2 fluorescent probe could fluorescently respond to lead ions in water with good selectivity and good fitting (R2=0.9988) within 1.22~500 µmol·L−​​​​​​​1, the detection limit was 1.22 µmol·L−​​​​​​​1. The fluorescence quenching occurred when the fluorescent probe combined with lead ions through the interaction between the amino group on the composite and lead ions, and the fluorescent carbon dot modification improved the performance of MIL-101-NH2 on detecting lead ions in water. During the detection of lead ions in the actual water samples, the sample recovery rates ranged from 97.24% to 106.16% with the relative standard deviations of RSD<4%, indicating that this novel CDs@MIL-101-NH2 composite can be used to test lead ions in water through fluorometric method. The results of this study can provide a new idea for the design and preparation of sensitive and efficient fluorescent probes, and also provide a reference for the further development and application of convenient in situ fluorescence methods for lead ions detection.

  • 铅(Pb)是一种普遍存在且具有生理毒性和生物蓄积性的重金属[1],低浓度暴露也会对人体和生活环境造成永久性损害[2-3],被公认为最具毒性的金属之一[4]。铅离子主要来源于铅冶炼、电池制造、印刷和采矿等行业。根据地表水环境质量标准,Ⅴ类水中Pb2+的含量为不高于0.1 mg·L−1[5]。目前,重金属检测方法包括原子光谱法、色谱法、电化学法、表面增强拉曼光谱法等[6-8]。这些方法灵敏度高、重现性好,但存在预处理复杂、耗时、设备昂贵等缺点[9]。与之相比,荧光检测法具有速度快、操作简单、价格低廉等优点[10],适用于偏远分散水源的检测以及突发环境事件的应急检测。因此,开发一种便捷原位检测铅离子的方法势在必行。

    金属-有机框架(MOFs)是一种新型的微孔材料,它通过金属离子或金属簇与有机配体之间的配位进行组装,在吸附和分离[11-12]、催化[13]、光电及电化学[14]等方面被广泛使用。MOFs不仅具有表面积大、可结合位点多、设计性强等特点[15],而且具有良好的荧光性能。已有研究[15-16]表明,基于MOFs的荧光传感器可以与重金属离子选择性结合,与Fe3+、Cu2+、Pb2+、Cr2O72+和CrO42+等结合后具有敏感的荧光淬灭响应。近年来,有研究者利用这种效应,开展了铅离子荧光法检测相关研究。LIU等[17]通过合成碱土金属有机框架[Ca210-L)(EtOH)]n,利用荧光淬灭机制检测Pb2+,检测限达69.4 µmol·L−1。LI等[18]合成的基于氟烯基的镧系元素金属-有机框架([Eu2(FDC)3DMA(H2O)3]·DMA·4.5H2O),作为荧光探针可以快速选择性检测水相中的铅离子,检测限为8.22 µmol·L−1。现已报道的荧光探针存在灵敏度较低的问题,故制备灵敏高效的荧光探针具有十分重要的现实意义。

    碳点(CDs)是一种新型的量子点,大量研究[19-21]表明,CDs@MOFs复合材料是可调可设计的荧光探针,对各种目标分析物具有高灵敏度和选择性,是一种很有前途的荧光材料。HAO等[19]通过合成花球状CDs@Eu-DPA MOFs,开发了一种检测Cu2+的荧光探针,CDs发射的荧光可以降低激发源不稳定性等系统误差,从而提高荧光探针的精度。XU等[20]设计了一种CD@Eu3+-MOF-253复合材料用于检测Hg2+,并发现Hg2+通过与CDs的表面官能团协调,可以显著淬灭CDs的荧光,而不影响Eu-MOF的荧光强度。到目前为止,已有许多关于MOFs的荧光探针研究[19-21],然而,CDs@MOFs荧光材料用于重金属铅离子检测的研究鲜有报道。

    本研究通过碳点(N,S,I-CDs)修饰MIL-101-NH2, 制备了CDs@MIL-101-NH2复合材料,通过TEM、XRD、FT-IR、XPS等对材料进行表征,研究碳点修饰对MOFs结构的影响以及材料浓度、pH值、时间对CDs@MOFs复合材料荧光强度的影响,在将复合材料作为荧光探针用于水中Pb2+的荧光检测过程中,考察其检测范围、检出限以及离子选择性等,探讨CDs@MIL-101-NH2复合材料发生荧光淬灭的可能机理,以期为荧光法检测重金属离子的MOF材料设计提供参考。

    • 实验所用试剂均为分析纯。六水合氯化铁(FeCl3·6H2O)和乙二胺购自国药集团;N,N-二甲基甲酰胺和无水乙醇购自麦克林有限公司;2-氨基对苯二甲酸购自毕得医药有限公司;三聚硫氰酸(C3H3N3S3)购自贤鼎生物有限公司;碘酸钾(KIO3)购自迈瑞尔有限公司;实验用水为去离子水,电阻率为18.2 MΩ·cm−1

    • 在碳点(N,S,I-CDs)制备过程中,室温下,将250 mg碘酸钾和25 mg三聚硫氰酸混合于25 mL去离子水中,加入1.5 mL乙二胺,超声振荡至完全溶解。将混合液置于50 mL聚四氟乙烯反应釜中,设定温度为180 °C,反应8 h,反应结束后,取出,自然冷却至室温。反应后的混合液经0.22 μm亲水PTFE滤膜过滤,取澄清溶液于4 °C保存待用。

      采用水热法,在室温下,将0.67 g FeCl3·6H2O(5 mmol)和0.45 g NH2-H2BDC(2.5 mmol)分散于30 mL于DMF中,超声10 min,待完全溶解后,再加入体积为200 μL的CDs溶液。将混合液转移至50 mL的聚四氟乙烯反应釜,置于110 °C的烘箱中,反应20 h。反应结束后,自然冷至室温,离心出产物,用乙醇反复离心洗涤3次以上去除多余的杂质,于80 °C真空条件下烘干,得到CDs@MIL-101-NH2(Fe)复合材料。

    • 针对实验室制备的CDs@MIL-101-NH2(Fe)材料,采用材料型场发射透射电镜(Talos F200X G2,USA)表征样品的形貌;采用MAXima 7000型X射线衍射分析仪(Shimadzu,Japan)表征材料的晶体结构;采用Nicolet 670光谱仪(Thermo Fisher,USA)记录傅里叶变换红外光谱并分析有机配体官能团的存在形态;采用X射线光电子能谱仪(Kratos,Japan)分析材料的元素及价态;采用Autosorb IQ3分析仪(Quantachrome,USA)测定材料的比表面积、介孔孔径分布;通过Brunauer-Emmett-Teller (BET)法和Barrett-Joyner-Halenda (BJH)法分别计算比表面积和孔径。

    • 在室温下,采用荧光光谱仪FLS1000 (Edinburgh,UK)进行测量;使用450 W的氙灯和光电倍增管(PMT900)作为测试光源。待测液的容器为石英比色皿(1 cm×1 cm),激发波长和狭缝宽度的选取须同时考虑样品特征与仪器最大接受荧光强度。将1.0 g的CDs@MIL-101-NH2(Fe)粉末溶于1 000 mL的去离子水中,超声10 min,使其完全分散均匀,得到初始质量浓度为1 000 mg·L−1的悬浮液荧光探针。然后将其质量浓度分别稀释至5、10、25、50、100、200、300、500 mg·L−1,测量上述质量浓度材料的荧光强度。制备最佳质量浓度的CDs@MOFs溶液,然后利用1 mol ·L−1的硫酸和氢氧化钠溶液将其pH分别调至5~13,测量上述pH下的CDs@MIL-101-NH2荧光探针的荧光强度。在最佳浓度和最佳pH值下,将响应时间设置为1、20、60、90、120、150、180、240和300 min,检测各个响应时间下溶液的荧光强度。

      检测不同Pb2+浓度(0、10、20、40、60、80、100、120、150、180、200、240、280、320、360、400、450、500 μmol·L−1) CDs@MIL-101-NH2(Fe)溶液的荧光强度。CDs@MOFs荧光探针效率的定量计算采用Stern-Volmer计算方法[21] (式(1))。

      式中:I0I分别为CDs@MOFs加入被分析物前后的荧光强度;c为被分析物的浓度;Ksv为Stern-Volmer常数,Ksv值越高,说明荧光探针的效率越高。

      在CDs@MIL-101-NH2(Fe)溶液溶液中,加入阴离子Cl、CO32−、PO43−、SO42−以及阳离子K+、Mg2+、Ba2+、Fe3+、Co2+、Ni2+、Cu2+、Cd2+、Cr3+(离子浓度= 0.5 mmol·L−1),混合均匀并检测CDs@MOFs溶液的荧光强度。

    • 利用自来水和湖水来验证CDs@MIL-101-NH2(Fe)荧光探针在水基质中检测铅离子的实用性。湖水水样取自思源湖(上海交通大学),自来水水样取自实验室(上海交通大学)。水样均通过0.45 μm孔径的滤膜过滤,去除悬浮颗粒物,分别加入Pb2+标准溶液,制备出不同浓度的加标水样。将1 mg CDs@MIL-101-NH2分散于100 mL加标水样中,孵育90 min后,测其荧光强度。

    2.   结果与讨论
    • 通过场发射透镜研究CDs@MIL-101-NH2(Fe)的微观形貌。如图1(a)所示,材料为纺锤形晶体,与已有研究[22]中的MIL-101-NH2晶体形状一致。显然,MIL-101-NH2在引入碳点后,晶体形貌仍呈纺锤形,说明碳点修饰不改变晶体形貌。XRD对样品的组成和晶体形态表征结果如图1(b)所示。可以看出:CDs@MIL-101-NH2的XRD谱图在9.4°、10.4°、16.8°、18.5°、20.7°和25.0°处有明显的特征峰;10.4°和16.8°处的特征峰与MIL-101-NH2(Fe)的特征峰[22-23]符合,在25.0°处的特征峰与碳点(N,S,I-CDs)的特征峰[24]相符。这说明CDs@MIL-101-NH2复合材料的构建是成功的,且碳点(N,S,I-CDs)的引入未对晶体MIL-101-NH2结构造成很大影响。

      为研究CDs@MIL-101-NH2(Fe)的结构,采用傅里叶变换红外光谱仪分析有机配体官能团的存在形态,红外光谱如图1(c)所示。吸附谱带在625 cm−1处分配给Fe—O键[23],1 400~1 600 cm−1处对应芳香环上的C=C伸缩振动吸收峰,1 384 cm−1处的强波段对应C—C键、—COO—的反对称伸缩振动峰和对称伸缩振动峰,说明CDs@MIL-101-NH2中存在二羧酸结构[25]。769 cm−1和3 348 cm−1处的吸收峰分别是N—H键的摇摆带和C—N键的拉伸带[24],说明氨基已成功修饰于框架上。这些吸收振动峰与已有研究[24]中报道的MIL-101-NH2的特征峰相似。复合材料CDs@MIL-101-NH2中还出现了一些新的峰,其中包括在2 500~3 500 cm−1处属于O—H键的伸缩振动峰[26],在1 656 cm−1处对应于C=O键的伸缩振动吸收峰以及1 257 cm−1、521 cm−1对应的C—S键、C—I键的伸缩振动峰[27]。这些新的特征峰进一步证实了碳点(N,S,I-CDs)在复合材料中的存在。本研究针对CDs@MIL-101-NH2进行了XPS分析,结果如图1(d)所示。CDs@MIL-101-NH2探测到的元素有C、N、O、Fe、S,碳点修饰的材料探测到的S元素进一步说明碳点(N,S,I-CDs)修饰过程的成功。I元素由于含量少而未被检测到,表明碳点在复合材料CDs@MIL-101-NH2中的占比较少。

      CDs@MIL-101-NH2(Fe)的N2吸附-解吸等温线如图1(e)所示。可以看出,曲线形状符合IV型等温线。CDs@MIL-101-NH2材料的孔径分布如图1(f)所示,其比表面积为45.374 m2·g−1,孔径为3.054 nm,这表明CDs@MIL-101-NH2具有介孔结构。

    • 图2(a)为CDs@MIL-101-NH2(Fe)的荧光激发和发射光谱图。在检测过程中,使用荧光光谱仪FLS1000在室温下进行测量,使用 450 W的氙灯和光电倍增管(PMT900)作为测试光源,激发狭缝宽度和发射狭缝宽度均为1.5 nm。确定CDs@MIL-101-NH2材料的最佳激发波长为340 nm,最佳发射波长为436 nm。

      发光CDs@MOFs的质量浓度和pH对荧光性质有重要影响[26,28]。如图2(b)所示,随着CDs@MIL-101-NH2(Fe)质量浓度的降低,荧光强度逐渐增大。当质量浓度达到10 mg·L−1时,荧光强度达到最大值。随着材料质量浓度的升高,荧光强度也呈现下降趋势,这可能与CDs@MIL-101-NH2的自淬灭行为有关。为达到最佳的荧光强度,以上实验确定材料的最佳质量浓度为10 mg·L−1。如图2(c)所示,MOFs材料荧光强度会受到pH的影响。pH值在5~7时,复合材料的荧光强度显著增大;pH为7~11时,荧光强度的变化不大;pH>11时,荧光强度锐减。由此可见,材料对酸性环境的变化十分敏感,在碱性环境中则相对稳定。这可能是由于CDs@MIL-101-NH2表面的氨基在酸性环境中容易质子化,从而对荧光信号产生了不良影响,在碱性环境中则不受影响。为获得最佳荧光强度,材料溶液的pH需要控制为7。

      响应时间会影响荧光强度的变化。如图2(d)所示,CDs@MIL-101-NH2(Fe)的响应时间大于90 min时,其荧光强度没有显著变化,趋于稳定状态。因此,90 min为CDs@MIL-101-NH2材料的最佳响应时间。

    • 为探讨CDs@MIL-101-NH2(Fe)作为荧光探针对金属离子的荧光响应的应用前景,研究了不同阴阳离子对CDs@MIL-101-NH2荧光强度的影响。由图3(a)可以看出,阴离子Cl、CO32−、PO43−、SO42−加入前后对复合材料荧光强度几乎没有影响(I0/I=1),而不同的金属离子对复合材料的荧光强度变化有不同的影响,如Fe3+、Cu2+和Pb2+与CDs@MIL-101-NH2(Fe)的相互作用可以显著淬灭荧光。上述结果表明,CDs@MIL-101-NH2在水介质中具有较高的选择性和灵敏度,用来检测水体中Pb2+的荧光探针会受到Fe3+和Cu2+的干扰。实验结果表明,过量的Na+和F对CDs@MIL-101-NH2溶液的荧光强度没有影响,故可采用NaF溶液消除Fe3+和Cu2+的干扰。对照实验表明,含100 μmol·L−1 Pb2+的CDs@MIL-101-NH2溶液在加入过量NaF后,荧光强度没有显著变化,变化率为2%~3%。同时,含100 μmol·L−1 Fe3+、100 μmol·L−1 Cu2+、100 μmol·L−1 Pb2+和过量NaF的CDs@MIL-101-NH2溶液产生的荧光淬灭,是含100 μmol·L−1 Pb2+和过量NaF的CDs@MIL-101-NH2溶液产生的荧光淬灭的98%~102%。实验结果证明,当NaF消除了Fe3+和Cu2+的干扰后,Pb2+的检测不受影响。因此,CDs@MIL-101-NH2对水中的Pb(Ⅱ)有较好的选择性,对实际水体中Pb(Ⅱ) 的检测具有较高的可行性。

      本研究进一步探讨了0~500 µmol·L−1的Pb2+浓度对CDs@MIL-101-NH2(Fe)荧光强度的影响,结果如图3(b)所示。采用上述方法制备的复合材料溶液,荧光淬灭效率由式(1)计算得出。CDs@MIL-101-NH2溶液I0/I与Pb2+质量浓度之间可决系数R2为0.998 8,Ksv为2 739.5 mol·L−1。这表明复合材料作为荧光探针检测水中的铅离子有较好的灵敏度。Pb2+的检出限为1.22 µmol·L−1 (3σ水平),检测区间为1.22~500 µmol·L−1

    • 为探究碳点修饰对MOF材料检测Pb2+的性能影响,比较了未经碳点修饰和碳点修饰的2种材料检测重金属Pb2+的效果差异。碳点(N,S,I-CDs)修饰获得的CDs@MIL-101-NH2(Fe)复合材料与未经碳点修饰的材料相比,检测区间由5.72~100 µmol·L−1变为1.22~500 µmol·L−1。可决系数R2从0.974 2提高至0.998 8,Pb2+的检出限从5.72 µmol·L−1降至1.22 µmol·L−1Ksv从831.2 mol·L−1增至2 739.5 mol·L−1。由此可证明碳点的修饰明显地提高了MIL-101-NH2对Pb2+的荧光淬灭传感效率。与其他报道结果(表1)相比,本研究所制备的复合材料用于荧光法检测铅离子具有更大的检测区间(1.22~500 µmol·L−1)和优异的荧光传感效率(Ksv)。这是因为,与传统的MOFs材料比较,碳点修饰可以弥补MOFs材料自身存在的一些缺陷,增强复合材料的光学性能。

      本研究通过CDs@MIL-101-NH2(Fe)的表征分析,探讨了CDs@MIL-101-NH2荧光淬灭的可能机制。如图2(c)所示,随着pH的升高,复合材料的荧光强度先增大后减小,pH为7~11时,荧光强度的变化不大,且氨基为MIL-101-NH2荧光产生的关键[24],可推测氨基在CDs@MIL-101-NH2荧光探针检测铅离子的荧光淬灭现象中起着重要作用。WU等[29]在制备NH2-UiO-66荧光探针用于铜离子的荧光检测研究中,发现铜离子具有顺磁性,d轨道对氨基有较高的亲和力,荧光淬灭的发生可能与Cu2+-NH2配合物的形成有关。已有研究者[24]在基于MIL-101-NH2材料荧光检测金属离子的研究中,提出氨基与金属离子的之间的螯合作用可以诱导主-客体电子转移,从而导致荧光淬灭的发生。由此可以看出,碳点的引入没有改变MIL-101-NH2的晶相,且CDs@MIL-101-NH2复合材料发生荧光淬灭的主要原因为氨基与铅离子的作用(图4)。

      已有研究[19,30]表明,荧光碳点的修饰增强了铅离子与激发态π电子的接触。荧光碳点的尺寸通常远小于MOFs材料,本研究所制备的MIL-101-NH2晶体粒径为800 nm~1 µm,制备的荧光碳点的粒径为4~5 nm。样品形貌与结构表征结果表明,荧光碳点的加入并未改变配位网络的结构。因此,推测荧光碳点的存在形式是分布于配位网络之间的极富电子的纳米结构。在铅离子荧光响应过程中,碳点的富电子基团具有远强于氨基的供电子能力,能够有效吸引铅离子的空轨道,使铅离子能够为附近的π*电子供弛豫途径[31],因此,荧光碳点的加入未改变MOFs配位网络本身的结构,但有效提高了铅离子的荧光响应效率。

      根据靶受体的不同,CDs@MOFs复合材料的传感途径一般可分为3类:1) CDs为受体; 2) MOFs为受体;3)CDs和MOFs为共同受体[32]。在本研究中,MIL-101-NH2作为受体,Pb2+可以通过与配体官能团氨基的相互作用改变荧光探针的荧光强度。因此,CDs和MOFs的荧光可以相互对照,从而提高了荧光检测的精确度。

    • 在实验过程中,配置不同浓度梯度的铅离子浓度标准液(0、10、20、40、60、80、100、120、150、180、200 μmol·L−1),获得了CDs@MIL-101-NH2(Fe)荧光探针结合后混合液的荧光强度。以铅离子的质量浓度为横坐标,荧光淬灭变化率为纵坐标,绘制标准曲线。基于标准曲线,根据实际样品中的荧光淬灭率,计算得出实际样品的铅离子质量浓度。实际样品主要为自来水和思源湖湖水,在进行实验前,对实际样品进行预处理过滤并对添加铅离子的自来水和思源湖湖水进行加标回收实验,结果如表2所示。由表2可以看出,加标回收率分别为98.74%~106.16%和97.24%~103.63%,相对标准偏差RSD<4%(n=3),检测可靠性和准确性较高。这说明基于CDs@MIL-101-NH2复合材料的荧光检测法应用于水体中的铅离子检测具有可行性。

    3.   结论
    • 1) CDs@MIL-101-NH2(Fe)复合材料在质量浓度为10 mg·L−1,pH为7,反应时间为90 min的条件下,荧光强度最佳。

      2)碳点(N,S,I-CDs)修饰提高了MIL-101-NH2(Fe)检测Pb2+的性能,检测区间由5.72~100 µmol·L−1变为1.22~500 µmol·L−1,可决系数R2从0.974 2提至0.998 8,Pb2+的检出限从5.72 µmol·L−1降至1.22 µmol·L−1Ksv从831.2 mol·L−1增至2 739.5 mol·L−1

      3) Pb2+的荧光淬灭效应可归因于CDs@MIL-101-NH2(Fe)复合材料上的氨基与铅离子的相互作用。荧光碳点(N,S,I-CDs)的加入不改变MIL-101-NH2(Fe)配位网络本身的结构,但有效提高了铅离子的荧光响应效率(Ksv)。

    Figure (4)  Table (2) Reference (32)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
  • 表 1  设计进出水水质及处理率
    Table 1.  Designed water quality and treatment rate of at the inlet and outlet
    水质指标进水水质/
    (mg·L−1)
    出水水质/
    (mg·L−1)
    处理率/%
    BOD51201091.7
    COD3503091.4
    TN601575
    TP60.591.6
    NH3-N401.596.3
    SS2001095
      注:COD与NH3-N执行地表水Ⅳ类水标准,其余指标执行《城镇污水处理厂污染物排放标准》GB18918-2002中一级标准的A级标准。
     | Show Table
    DownLoad: CSV
  • 表 2  各处理单元设计参数
    Table 2.  Design parameters of each treatment process unit
    处理单元构筑物尺寸/(m×m×m)数量工艺设计参数
    预处理单元进水井及粗格栅17.8×16.9×(18.6+6.0)1座动轨式格栅除污机近期2台,远期增加1台,栅隙宽b=15 mm;设计单渠宽1 000 mm,栅条间隙15 mm
    提升泵房16.9×14.9×(22.4+6.0)1座3台进水提升大泵流量为1 100 m3/h,扬程为15.5 m,2台小泵流量为
    590 m3/h,扬程为15.5 m
    细格栅14.5×11.0×(3.0+6.0)1座2套阶梯式网板细格栅,1套人工格栅,格栅栅隙5 mm,渠宽1.7 m
    曝气沉砂池28.0×15.0×(5.5+6.0)1座水力停留时间HRT=7 min,有效水深H=2.8 m
    精细格栅14.0×10.0×(3.55+6.0)1座设计渠宽1 800 mm,格栅栅隙为2 mm,格栅安装倾角为90°,栅前水深为1.76 m
    生物处理单元生化池95×74.7×(9.2+5.5)4座由预缺氧池、厌氧池、缺氧池、好氧池组合。总水力停留时间13.5 h,混合液MLSS含量4.0 g·L−1,污泥负荷0.065 kg,污泥回流比0~100%,混合液回流比100%~200%
    二沉池42.2×82.5×(6.15+4.5)4组表面负荷为1.13 m3·(m2·h)−1,回流污泥浓度8.0 g·L−1,有效水深4.80 m
    深度处理单元高效沉淀池20.7×46.2×(7.1+5.5)2座混合池的反应时间3 min,絮凝池的反应时间10 min,沉淀区清水区高度1.0 m,污泥回流比3%~5%
    反硝化滤池62.95×16.4×(7.1+5.5)6组反冲洗周期12~24 h,混合时间40 s
    臭氧接触池32.6×22.2×(7.75+5.5)1座臭氧接触时间:30 min,臭氧投加量为10 mg·L−1
     | Show Table
    DownLoad: CSV
  • 表 3  综合楼的采暖热负荷和空调冷负荷参数
    Table 3.  Heating and cooling load parameters of the complex building
    面积/m2冷指标/(W·m−2)冷负荷/W热指标/(W·m−2)热负荷/W
    2 500110330 000120360 000
     | Show Table
    DownLoad: CSV
  • 表 4  实际进出水水质
    Table 4.  Actual water quality of influent and effluent sewage
    水质指标进水水质/(mg·L−1)进水水质/(mg·L−1)处理率/%
    BOD51286.594.9
    COD3321994.3
    TN595.890.2
    TP5.80.1896.9
    NH3-N390.3599.1
    SS286697.9
     | Show Table
    DownLoad: CSV