DENG Xuwei, HUANG Yu, LI Zhongqiang, LI Haibo, SU Ming, ZHU Zhichao, ZHAO Sujuan. Temporal and spatial variations characteristics of atmospheric particulate matter in Hubei province, China[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5152-5158. doi: 10.12030/j.cjee.201610095
Citation: DENG Xuwei, HUANG Yu, LI Zhongqiang, LI Haibo, SU Ming, ZHU Zhichao, ZHAO Sujuan. Temporal and spatial variations characteristics of atmospheric particulate matter in Hubei province, China[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5152-5158. doi: 10.12030/j.cjee.201610095

Temporal and spatial variations characteristics of atmospheric particulate matter in Hubei province, China

  • Received Date: 15/03/2017
    Accepted Date: 17/10/2016
    Available Online: 26/08/2017
    Fund Project:
  • The analysis of spatial and temporal variations of atmospheric particulate matter is significant for atmosphere pollution control, early warning and forecast. In this study, the spatial and temporal variations of PM10 and PM2.5 in Hubei province were studied through PM10 and PM2.5 per hour concentration data which collected from 53 monitoring sites distributed in 13 main cities during January 2015 to December 2015.The results showed that there were obvious spatial heterogeneous in the distribution of PM10 and PM2.5 concentrations in east-west and north-south, with lowest in the west region, highest in the central region, and middle in east region. Also, the PM10 and PM2.5 concentrations in all cities changed dramatically with time, and there was a pattern of PM10 and PM2.5 concentrations in summer 10 and PM2.5 concentrations in autumn 10 and PM2.5 concentrations in spring 10 and PM2.5 concentrations in winter. The lowest PM10 and PM2.5 concentrations occured in the summer and the highest occured in January. Correlation analysis indicated that there were a significant negative correlation between PM10 and PM2.5 concentrations and precipitation and temperature, and sin significant postive correlation existed between PM10 and PM2.5 concentrations and human factors, such as construction area, motor vehicle ownership, freight and passenger traffic, the per capita GDP and per capita output.
  • [1] 谢雨竹,潘月鹏,倪长健,等. 成都市区夏季大气污染物浓度时空变化特征分析[J]. 环境科学学报, 2015, 35(4):975-983

    Google Scholar Pub Med

    [2] 高健,王进,程淑会,等. 济南夏季大气颗粒物粒径分布特征及来源机理分析[J]. 中国科学院研究生院学报, 2007, 24(5):680-687

    Google Scholar Pub Med

    [3] 李杰,杨文夷,陈焕盛,等. 东亚大气可吸入颗粒物时空分布的数值模拟研究[J]. 环境科学学报, 2014, 34(3):548-557

    Google Scholar Pub Med

    [4] ZHAO H Y, ZHANG Q, GUAN D B, et al. Assessment of China's virtual air pollution transport embodied in trade by using a consumption-based emission inventory[J]. Atmospheric Chemistry and Physics, 2015, 15:5443-5456

    Google Scholar Pub Med

    [5] CERRO J C, CERDA V, PEY J. Trends of air pollution in the Western Mediterranean Basin from a 13-year database:A research considering regional, suburban and urban environments in Mallorca(Balearic Islands)[J]. Atmospheric Environment, 2015, 103:138-146

    Google Scholar Pub Med

    [6] 王丹璐,张有贤,牛武江.兰州市冬季细颗粒中微量金属元素及无机可溶性离子来源分析[J]. 环境工程学报, 2015, 9(8):3944-3954

    Google Scholar Pub Med

    [7] WANG H L, ZHU B, SHEN L J, et al. Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China:Size-fractionated, seasonal variations and sources[J]. Atmospheric Environment, 2015, 123:370-379

    Google Scholar Pub Med

    [8] 王玮,汤大钢,刘红杰,等. 中国PM2.5污染状况和污染特征的研究[J]. 环境科学研究, 2000, 13(1):1-5

    Google Scholar Pub Med

    [9] MADANIYAZI L, NAGASHIMA T, GUO Y M, et al. Projecting fine particulate matter-related mortality in East China[J]. Environmental Science & Technology, 2015, 49(18):11141-11150

    Google Scholar Pub Med

    [10] BLANCHARD C L, TANENBAUMA S, HIDYB G M. Spatial and temporal variability of air pollution in Birmingham, Alabama[J]. Atmospheric Environment, 2014,89:382-391

    Google Scholar Pub Med

    [11] BRUNEKREEF B, HOLGATE S T. Air pollution and health[J]. Lancet, 2002, 360(9341):1233-1242

    Google Scholar Pub Med

    [12] GE W Z, CHEN R J, SONG W M, et al. Daily visibility and hospital admission in Shanghai, China[J]. Biomedical and Environmental Sciences, 2011, 24(2):117-121

    Google Scholar Pub Med

    [13] 王敬,毕晓辉,冯银厂,等. 乌鲁木齐市重污染期间PM2.5污染特征与来源解析[J]. 环境科学研究, 2014, 27(2):113-119

    Google Scholar Pub Med

    [14] 张智胜,陶俊,谢绍东,等. 成都城区PM2.5季节污染特征及来源解析[J]. 环境科学学报, 2013, 33(11):2947-2952

    Google Scholar Pub Med

    [15] 耿彦红,刘卫,单健,等. 上海市大气颗粒物中水溶性离子的粒径分布特征[J]. 中国环境科学, 2010, 30(12):1585-1589

    Google Scholar Pub Med

    [16] 韩月梅,沈振兴,曹军骥,等. 西安市大气颗粒物中水溶性无机离子的季节变化特征[J]. 环境化学, 2009, 28(2):261-266

    Google Scholar Pub Med

    [17] 翟广宇,王式功,董继元,等. 兰州市不同径粒大气颗粒物污染特征及气象因子的影响分析[J]. 生态环境学报, 2015, 24(1):70-75

    Google Scholar Pub Med

    [18] 周学华,王哲,郝明途,等. 济南市春季大气颗粒物污染研究[J]. 环境科学学报, 2008, 28(4):755-763

    Google Scholar Pub Med

    [19] 胡敏,张静,吴志军. 北京降水化学组成特征及其对大气颗粒物的去除作用[J]. 中国科学(B辑:化学), 2005, 35(2):169-176

    Google Scholar Pub Med

    [20] 胡敏,刘尚,吴志军,等. 北京夏季高温高湿和降水过程对大气颗粒物谱分布的影响[J]. 环境科学, 2006, 27(11):2293-2298

    Google Scholar Pub Med

    [21] 霍铭群,孙倩,谢鹏,等. 大气颗粒物和降水化学特征的相互关系[J]. 环境科学, 2009, 30(11):3159-3166

    Google Scholar Pub Med

    [22] 邓利群,钱骏,廖瑞雪,等. 2009年8-9月成都市颗粒物污染及其与气象条件的关系[J]. 中国环境科学, 2012, 32(8):1433-1438

    Google Scholar Pub Med

    [23] 李军,孙春宝,刘咸德,等. 气象因素对北京市大气颗粒物浓度影响的非参数分析[J]. 环境科学研究, 2009, 22(6):663-669

    Google Scholar Pub Med

    [24] 郎凤玲,闫伟奇,张泉,等. 北京大气颗粒物数浓度粒径分布特征及与气象条件的相关性[J]. 中国环境科学, 2013, 33(7):1153-1159

    Google Scholar Pub Med

    [25] 孙欢欢,倪长健,崔蕾,等. 成都市大气颗粒物污染特征及与气象因子的关联性分析[J]. 环境污染与防治, 2016, 38(5):55-60

    Google Scholar Pub Med

    [26] KIM K H, KIM M Y, HONG S M, et al. The effects of wind speed on the relative relationships between different sized-fractions of airborne particles[J]. Chemosphere, 2005, 59:929-937

    Google Scholar Pub Med

    [27] 陶士康. 2015世界互联网大会期间嘉兴市大气细颗粒物污染特征及来源研究:以单颗粒气溶胶质谱技术为例[J]. 环境科学学报, 2016, 36(8):2761-2770

    Google Scholar Pub Med

    [28] 曹军骥. 中国大气PM2.5污染的主要成因与控制对策[J]. 科技导报, 2016, 34(20):74-80

    Google Scholar Pub Med

    [29] 王立平,陈俊. 中国雾霾污染的社会经济影响因素:基于空间面板数据EBA模型实证研究[J]. 环境科学学报, 2016, 36(10):3833-3839

    Google Scholar Pub Med

    [30] 杨昆,杨玉莲,朱彦辉,等. 中国PM2.5污染与社会经济的空间关系及成因[J]. 地理研究, 2016, 35(6):1051-1060

    Google Scholar Pub Med

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionDOWNLOAD: 4.5 %DOWNLOAD: 4.5 %FULLTEXT: 87.6 %FULLTEXT: 87.6 %META: 8.0 %META: 8.0 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 88.6 %其他: 88.6 %Ashburn: 1.0 %Ashburn: 1.0 %Beijing: 2.0 %Beijing: 2.0 %El Paso: 0.2 %El Paso: 0.2 %Ewirgol: 0.2 %Ewirgol: 0.2 %Guangzhou Shi: 0.2 %Guangzhou Shi: 0.2 %Harbin: 0.2 %Harbin: 0.2 %Kunshan: 0.2 %Kunshan: 0.2 %Shanghai: 0.2 %Shanghai: 0.2 %Shijiazhuang: 0.7 %Shijiazhuang: 0.7 %Wuhan: 0.5 %Wuhan: 0.5 %Xingfeng: 0.2 %Xingfeng: 0.2 %XX: 4.0 %XX: 4.0 %Zhongshan: 0.2 %Zhongshan: 0.2 %济南: 0.5 %济南: 0.5 %深圳: 0.5 %深圳: 0.5 %石家庄: 0.2 %石家庄: 0.2 %其他AshburnBeijingEl PasoEwirgolGuangzhou ShiHarbinKunshanShanghaiShijiazhuangWuhanXingfengXXZhongshan济南深圳石家庄Highcharts.com
  • Cited by

    1. 成锋,吴雅琴,黄彦,程毅,傅尧. 2018~2022年咸宁城区环境空气质量状况分析. 绿色科技. 2023(12): 120-123+143 .
    2. 王振楠,张萌萌,边帅鹏,姚成才,赵利,孙天宝,蔡舰,乔莎旎. 襄阳市秋冬季PM_(2.5)污染特征及潜在源区分析. 中国环境监测. 2023(05): 165-175 .
    3. 伍昱飞,叶华香,臧淑英. 黑龙江省大气污染物时空分布特征及影响因素. 科技和产业. 2021(08): 134-141 .
    4. 尤能华,袁修彬,黄彦,朱必农,程毅. 咸宁市大气颗粒物污染特征及气象因子影响研究. 绿色科技. 2020(18): 88-89 .
    5. 彭秋桐,李中强,邓绪伟,苏命. 城市湖泊氮磷沉降输入量及影响因子——以武汉东湖为例. 环境科学学报. 2019(08): 2635-2643 .
    6. 乔妮. 庆阳市PM_(2.5)和PM_(10)质量浓度变化特征及其比值分析. 陇东学院学报. 2018(01): 87-90 .
    7. 李大年,余家燕,刘海立. 重庆市PM_(2.5)浓度时空变化特征分析研究. 环境与发展. 2018(01): 159-160 .
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2414) PDF downloads(447) Cited by(11)

Access History

Temporal and spatial variations characteristics of atmospheric particulate matter in Hubei province, China

Fund Project:

Abstract: The analysis of spatial and temporal variations of atmospheric particulate matter is significant for atmosphere pollution control, early warning and forecast. In this study, the spatial and temporal variations of PM10 and PM2.5 in Hubei province were studied through PM10 and PM2.5 per hour concentration data which collected from 53 monitoring sites distributed in 13 main cities during January 2015 to December 2015.The results showed that there were obvious spatial heterogeneous in the distribution of PM10 and PM2.5 concentrations in east-west and north-south, with lowest in the west region, highest in the central region, and middle in east region. Also, the PM10 and PM2.5 concentrations in all cities changed dramatically with time, and there was a pattern of PM10 and PM2.5 concentrations in summer 10 and PM2.5 concentrations in autumn 10 and PM2.5 concentrations in spring 10 and PM2.5 concentrations in winter. The lowest PM10 and PM2.5 concentrations occured in the summer and the highest occured in January. Correlation analysis indicated that there were a significant negative correlation between PM10 and PM2.5 concentrations and precipitation and temperature, and sin significant postive correlation existed between PM10 and PM2.5 concentrations and human factors, such as construction area, motor vehicle ownership, freight and passenger traffic, the per capita GDP and per capita output.

Reference (30)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint