AN Hao, ZHAN Maohua, CHENG Hanfei, LI Yizhou, LI Chao. Effect of electrokinetic remediation on heavy metal contaminated soil by adding acetic acid[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5283-5290. doi: 10.12030/j.cjee.201609176
Citation:
AN Hao, ZHAN Maohua, CHENG Hanfei, LI Yizhou, LI Chao. Effect of electrokinetic remediation on heavy metal contaminated soil by adding acetic acid[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5283-5290. doi: 10.12030/j.cjee.201609176
Effect of electrokinetic remediation on heavy metal contaminated soil by adding acetic acid
MCC Huatian Engineering and Technology Corporation, Nanjing 210019, China
2.
State Key Laboratory of Pollution Control and Resource Reuse, College of Environment, Nanjing University, Nanjing 210023, China
3.
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China
Received Date:
15/12/2016
Accepted Date:
21/09/2016
Available Online:
26/08/2017
Fund Project:
Abstract
Electrokinetic remediation is one of the environmental friendly soil remediation technology which has a promising prospect as a result of its low cost, easy operation and low secondary pollution. By using kaoline, removal performance of Cu and Zn is studied under the different condition of electric field. In order to improve the removal efficiencies of heavy metals, the electrolyte pH of acetic acid was set as 3.5.And adding the acetic acid to kaoline where the acetic acid can contribute to soil acidification and less effects on heavy metal precipitation, which is hard to move in the electric field. Compared to distilled water, adding acetic acid can improve soil acidification and change pH catastrophe point moving to cathode, from S4,S5 to S3,S4, and the maximum electric current as well as maximum electric current after 384 hours rises obviously. Under the same conditions, the maximum electric current are from 60 to 139 mA, 108 to 170 mA, 152 to 290 mA when electric field intensity are 0.5, 1.0, 1.5 V·cm-1, respectively. The minimum electric current after 384 h are from 33 to 70 mA, 41 to 83 mA, 71 to 123 mA when electric field intensity are 0.5, 1.0, 1.5 V·cm-1, respectively. In conclusion, higher electric field intensity is more benefit for removal of heavy metals. The removal efficiency is 15% higher than those who do not add acetic acid based on experimental data.
PAN Y, LI H.Investigating heavy metal pollution in mining brownfield and its policy implications:A case study of the Bayan Obo Rare Earth Mine, Inner Mongolia, China[J]. Environmental Management,2016,57(4):1-15
SAHANA A, JOY V C.Short-term biochemical impacts in Cyphoderus javanus Borner (Collembola) as potential biomarkers of fly ash and heavy metal pollution in tropical lateritic soil[J]. Journal of Environmental Protection,2016,7(1):1-13
HEDDE M, BUREAU F, DELPORTE P, et al.The effects of earthworm species on soil behaviour depend on land use[J]. Soil Biology and Biochemistry,2013,65:264-273
MITKOVA T, PRENTOVIC' T, MARKOSKI M.Phytoremediation of soils contaminated with heavy metals in the vicinity of the smelter for lead and zinc in veles[J]. Agriculturae Conspectus Scientificus,2015,80(1):53-57
DE MORA A P, ORTEGA-CALVO J J, CABRERA F, et al.Changes in enzyme activities and microbial biomass after "in situ" remediation of a heavy metal-contaminated soil[J]. Applied Soil Ecology,2005,28(2):125-137
CUNNINGHAM S D, BERTI W R.Remediation of contaminated soils with green plants:An overview[J]. Vitro Cellular & Developmental Biology Plant,1993,29(4):207-212
Abstract: Electrokinetic remediation is one of the environmental friendly soil remediation technology which has a promising prospect as a result of its low cost, easy operation and low secondary pollution. By using kaoline, removal performance of Cu and Zn is studied under the different condition of electric field. In order to improve the removal efficiencies of heavy metals, the electrolyte pH of acetic acid was set as 3.5.And adding the acetic acid to kaoline where the acetic acid can contribute to soil acidification and less effects on heavy metal precipitation, which is hard to move in the electric field. Compared to distilled water, adding acetic acid can improve soil acidification and change pH catastrophe point moving to cathode, from S4,S5 to S3,S4, and the maximum electric current as well as maximum electric current after 384 hours rises obviously. Under the same conditions, the maximum electric current are from 60 to 139 mA, 108 to 170 mA, 152 to 290 mA when electric field intensity are 0.5, 1.0, 1.5 V·cm-1, respectively. The minimum electric current after 384 h are from 33 to 70 mA, 41 to 83 mA, 71 to 123 mA when electric field intensity are 0.5, 1.0, 1.5 V·cm-1, respectively. In conclusion, higher electric field intensity is more benefit for removal of heavy metals. The removal efficiency is 15% higher than those who do not add acetic acid based on experimental data.
AN Hao, ZHAN Maohua, CHENG Hanfei, LI Yizhou, LI Chao. Effect of electrokinetic remediation on heavy metal contaminated soil by adding acetic acid[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5283-5290. doi: 10.12030/j.cjee.201609176
AN Hao, ZHAN Maohua, CHENG Hanfei, LI Yizhou, LI Chao. Effect of electrokinetic remediation on heavy metal contaminated soil by adding acetic acid[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5283-5290. doi: 10.12030/j.cjee.201609176