[1] LI Q, CHEN Z, WANG H, et al. Removal of organic compounds by nanoscale zero-valent iron and its composites[J]. Science of The Total Environment, 2021, 792: 148546. doi: 10.1016/j.scitotenv.2021.148546
[2] LIU X, MA R, ZHUANG L, et al. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(8): 751-790. doi: 10.1080/10643389.2020.1734433
[3] ZHANG Q, MA R, TIAN Y, et al. Sterilization Efficiency of a Novel Electrochemical Disinfectant against Staphylococcus aureus[J]. Environmental Science & Technology, 2016, 50(6): 3184-3192.
[4] LU Y, CAI Y, ZHANG S, et al. Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: mechanism, challenges and perspective[J]. Biochar, 2022, 4(1): 45. doi: 10.1007/s42773-022-00173-y
[5] CAI Y, LING Q, YI Y, et al. Application of covalent organic frameworks in environmental pollution management[J]. Applied Catalysis A: General, 2022, 643: 118733. doi: 10.1016/j.apcata.2022.118733
[6] ZHANG Y, LIU H, GAO F, et al. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment[J]. EnergyChem, 2022, 4(4): 100078. doi: 10.1016/j.enchem.2022.100078
[7] RACHNA DEVI H, BISEN O Y, CAO X, et al. Design of hierarchical Oxide‐Carbon Nanostructures for Trifunctional Electrocatalytic Applications[J]. Advanced Materials Interfaces, 2022, 9(14): 2200071. doi: 10.1002/admi.202200071
[8] SPENADEL L, BOUDART M. Dispersion of platinum on supported catalysts[J]. The Journal of Physical Chemistry, 1960, 64(2): 204-207. doi: 10.1021/j100831a004
[9] ASAKURA K, NAGAHIRO H, ICHIKUNI N, et al. Structure and catalytic combustion activity of atomically dispersed Pt species at MgO surface[J]. Applied Catalysis A: General, 1999, 188(1/2): 313-324.
[10] QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641. doi: 10.1038/nchem.1095
[11] HU H, XI J. Single-atom catalysis for organic reactions[J]. Chinese Chemical Letters, 2023, 34(6): 107959. doi: 10.1016/j.cclet.2022.107959
[12] SHANG Y, XU X, GAO B, et al. Single-atom catalysis in advanced oxidation processes for environmental remediation[J]. Chemical Society Reviews, 2021, 50(8): 5281-5322. doi: 10.1039/D0CS01032D
[13] XI J B, JUNG H S, XU Y, et al. Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts[J]. Advanced Functional Materials, 2021, 31(12): 2008318. doi: 10.1002/adfm.202008318
[14] CUI T, LI L, YE C, et al. Heterogeneous Single Atom Environmental Catalysis: Fundamentals, Applications, and Opportunities[J]. Advanced Functional Materials, 2022, 32(9): 2108381. doi: 10.1002/adfm.202108381
[15] HU H Y, ZHAO Y Y, ZHANG Y, et al. Performance regulation of single-atom catalyst by modulating the microenvironment of metal sites[J]. Topics in Current Chemistry (Cham), 2023, 381(5): 24. doi: 10.1007/s41061-023-00434-9
[16] SU J, ZHUANG L, ZHANG S, et al. Single atom catalyst for electrocatalysis[J]. Chinese Chemical Letters, 2021, 32(10): 2947-2962. doi: 10.1016/j.cclet.2021.03.082
[17] DARBY M T, STAMATAKIS M, MICHAELIDES A, et al. Lonely Atoms with Special Gifts: Breaking Linear Scaling Relationships in Heterogeneous Catalysis with Single-Atom Alloys[J]. The Journal of Physical Chemistry Letters, 2018, 9(18): 5636-5646. doi: 10.1021/acs.jpclett.8b01888
[18] GIANNAKAKIS G, FLYTZANI-STEPHANOPOULOS M, SYKES E C H. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts[J]. Accounts of Chemical Research, 2019, 52(1): 237-247. doi: 10.1021/acs.accounts.8b00490
[19] XU Z L, AO Z M, YANG M, et al. Recent progress in single-atom alloys: Synthesis, properties, and applications in environmental catalysis[J]. Journal of Hazardous Materials, 2022, 424(Pt B): 127427.
[20] SUN X, SONG Y, JIANG G, et al. Fundamentals and catalytic applications of single-atom alloys[J]. Science China Materials, 2024, 67(1): 1-17. doi: 10.1007/s40843-023-2713-6
[21] REN W, TAN X, QU J, et al. Isolated copper–tin atomic interfaces tuning electrocatalytic CO2 conversion[J]. Nature Communications, 2021, 12(1): 1449. doi: 10.1038/s41467-021-21750-y
[22] JI K Y, XU M, XU S M, et al. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1Cu single-atom alloy catalyst[J]. Angewandte Chemie International Edition, 2022, 61(37): e202209849. [LinkOut]
[23] LANG R, DU X, HUANG Y, et al. Single-Atom Catalysts Based on the Metal–Oxide Interaction[J]. Chemical Reviews, 2020, 120(21): 11986-12043. doi: 10.1021/acs.chemrev.0c00797
[24] SHANG Y, DUAN X, WANG S, et al. Carbon-based single atom catalyst: Synthesis, characterization, DFT calculations[J]. Chinese Chemical Letters, 2022, 33(2): 663-673. doi: 10.1016/j.cclet.2021.07.050
[25] LI X, WANG B. Atomic regulations of single atom from metal-organic framework derived carbon for advanced water treatment[J]. Nano Research, 2023, 16(7): 10326-10341. doi: 10.1007/s12274-023-5616-z
[26] ZHOU H, YANG T, KOU Z, et al. Negative Pressure Pyrolysis Induced Highly Accessible Single Sites Dispersed on 3D Graphene Frameworks for Enhanced Oxygen Reduction[J]. Angewandte Chemie International Edition, 2020, 59(46): 20465-20469. doi: 10.1002/anie.202009700
[27] LI Y, CHEN J, CAI P, et al. An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation[J]. Journal of Materials Chemistry A, 2018, 6(12): 4948-4954. doi: 10.1039/C7TA10374C
[28] SONG X, ZHANG M, XIU X, et al. Accelerated removal of sulfadiazine by heterogeneous electro-Fenton system with Pt-FeOX/graphene single-atom alloy cathodes[J]. Journal of Environmental Management, 2024, 349: 119541. doi: 10.1016/j.jenvman.2023.119541
[29] YANG M, LI H, LIU F, et al. Mechanism insight into oxygen vacancy-dependent effect in Fe1/TiO2 single-atom catalyst for highly enhanced photo-Fenton mineralization of phenol[J]. Applied Catalysis B: Environment and Energy, 2024, 354: 124071. doi: 10.1016/j.apcatb.2024.124071
[30] GU H, LIU X, LIU X, et al. Adjacent single-atom irons boosting molecular oxygen activation on MnO2[J]. Nature Communications, 2021, 12(1): 5422. doi: 10.1038/s41467-021-25726-w
[31] LIAO X, GUO M, TANG W, et al. Bimetallic single atom promoted α-MnO2 for enhanced catalytic oxidation of 5-hydroxymethylfurfural[J]. Green Chemistry, 2022, 24(21): 8424-8433. doi: 10.1039/D2GC01769E
[32] LI X, HU J, DENG Y, et al. High stable photo-Fenton-like catalyst of FeP/Fe single atom-graphene oxide for long-term antibiotic tetracycline removal[J]. Applied Catalysis B: Environmental, 2023, 324: 122243. doi: 10.1016/j.apcatb.2022.122243
[33] WU X, RIGBY K, HUANG D, et al. Single-Atom Cobalt Incorporated in a 2D Graphene Oxide Membrane for Catalytic Pollutant Degradation[J]. Environmental Science & Technology, 2022, 56(2): 1341-1351.
[34] ZHANG X, WANG H, GUO Y, et al. Enhanced tetracycline degradation by a confinement structure rGO/Fe1/C3N4 photocathode during the sequential oxygen reduction process[J]. Separation and Purification Technology, 2024, 330: 125473. doi: 10.1016/j.seppur.2023.125473
[35] YANG X, QIN J, DAI Z, et al. MOF-derived Fe based catalysts for efficiently Advanced Oxidation Processes: From single atoms to diatomic and nanoparticles[J]. Progress in Natural Science: Materials International, 2023, 33(4): 534-543. doi: 10.1016/j.pnsc.2023.10.002
[36] ZHANG W, LI M, LUO J, et al. Modulating the coordination environment of Co single-atom catalysts through sulphur doping to efficiently enhance peroxymonosulfate activation for degradation of carbamazepine[J]. Chemical Engineering Journal, 2023, 474: 145377. doi: 10.1016/j.cej.2023.145377
[37] ZENG Z, YE F, DENG S, et al. Accelerated organic pollutants mineralization in interlayer confined single Pt atom photocatalyst for hydrogen recovery[J]. Chemical Engineering Journal, 2022, 444: 136561. doi: 10.1016/j.cej.2022.136561
[38] SHI B, LI H, FU X, et al. Fe Single-Atom Catalyst for Cost-Effective yet Highly Efficient Heterogeneous Fenton Catalysis[J]. ACS Applied Materials & Interfaces, 2022, 14(48): 53767-53776.
[39] CAI J, LI H, FENG K, et al. Low-temperature degradation of humic acid via titanium zirconium oxide@copper single-atom activating oxygen: Mechanism and pathways[J]. Chemical Engineering Journal, 2022, 450: 138239. doi: 10.1016/j.cej.2022.138239
[40] LIU X, GAO Z, HUANG H, et al. Simultaneous catalytic oxidation of nitric oxide and elemental mercury by single-atom Pd/g-C3N4 catalyst: A DFT study[J]. Molecular Catalysis, 2020, 488: 110901. doi: 10.1016/j.mcat.2020.110901
[41] SUN H, TANG R, HUANG J. Considering single-atom catalysts as photocatalysts from synthesis to application[J]. iScience, 2022, 25(5): 104232. doi: 10.1016/j.isci.2022.104232
[42] ZHANG Q, GUAN J. Single‐Atom Catalysts for Electrocatalytic Applications[J]. Advanced Functional Materials, 2020, 30(31): 2000768. doi: 10.1002/adfm.202000768
[43] LI D, ZHANG S, LI S, et al. Mechanism of the application of single-atom catalyst-activated PMS/PDS to the degradation of organic pollutants in water environment: A review[J]. Journal of Cleaner Production, 2023, 397: 136468. doi: 10.1016/j.jclepro.2023.136468
[44] ZHOU Q, WANG S, LIU J, et al. Geological evolution of offshore pollution and its long-term potential impacts on marine ecosystems[J]. Geoscience Frontiers, 2022, 13(5): 101427. doi: 10.1016/j.gsf.2022.101427
[45] LIAN L, YAO B, HOU S, et al. Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents[J]. Environmental Science & Technology, 2017, 51(5): 2954-2962.
[46] LI H, SHAN C, PAN B. Fe(III)-Doped g-C3N4 Mediated Peroxymonosulfate Activation for Selective Degradation of Phenolic Compounds via High-Valent Iron-Oxo Species[J]. Environmental Science & Technology, 2018, 52(4): 2197-2205.
[47] JI Z, CAI R, YE W, et al. Confined Fe single atomic sites on (100) plane of anatase TiO2 nanofibers boost white LED driven Fenton-like norfloxacin degradation[J]. Journal of Cleaner Production, 2023, 382: 135161. doi: 10.1016/j.jclepro.2022.135161
[48] YANG W, HONG P, YANG D, et al. Enhanced Fenton-like degradation of sulfadiazine by single atom iron materials fixed on nitrogen-doped porous carbon[J]. Journal of Colloid and Interface Science, 2021, 597: 56-65. doi: 10.1016/j.jcis.2021.03.168
[49] LIU J, HE H, SHEN Z, et al. Photoassisted highly efficient activation of persulfate over a single-atom Cu catalyst for tetracycline degradation: Process and mechanism[J]. Journal of Hazardous Materials, 2022, 429: 128398. doi: 10.1016/j.jhazmat.2022.128398
[50] XIAO Z J, ZHOU B Q, FENG X C, et al. Anchored Co–oxo generated by cobalt single atoms outperformed aqueous species from the counterparts in peroxymonosulfate treatment[J]. Applied Catalysis B: Environmental, 2023, 328: 122483. doi: 10.1016/j.apcatb.2023.122483
[51] LUO J, HAN H, WANG X, et al. Single-atom Nb anchored on graphitic carbon nitride for boosting electron transfer towards improved photocatalytic performance[J]. Applied Catalysis B: Environmental, 2023, 328: 122495. doi: 10.1016/j.apcatb.2023.122495
[52] LI Z M, ZHAO Z Q, CHEN S T, et al. Chemically tailored single atoms for targeted and light-controlled bactericidal activity[J]. Advanced Healthcare Materials, 2024, 13(5): e2302480. [PubMed]
[53] ZHENG J, FAN C, LI X, et al. Intelligent multifunctional ruthenium monoatomic/ZnAl-LDH photocatalysts for simultaneous detection and rapid degradation of antibiotics[J]. Journal of Environmental Management, 2024, 353: 120156. doi: 10.1016/j.jenvman.2024.120156
[54] OU H H, QIAN Y P, YUAN L T, et al. Spatial position regulation of Cu single atom site realizes efficient nanozyme photocatalytic bactericidal activity[J]. Advanced Materials, 2023, 35(46): e2305077. doi: 10.1002/adma.202305077
[55] YANG L X, YANG H Q, YIN S Y, et al. Fe single-atom catalyst for efficient and rapid Fenton-like degradation of organics and disinfection against bacteria[J]. Small, 2022, 18(9): e2104941. doi: 10.1002/smll.202104941
[56] WANG J, LI Y, HUANG D, et al. Rapid inactivation of droplet-transmitted microorganisms using silver-single-atom photocatalysts impregnated masks under weak solar irradiation[J]. Chemical Engineering Journal, 2024, 483: 149309. doi: 10.1016/j.cej.2024.149309
[57] YANG Y, SUN J, WEN J, et al. Single-atom doping in carbon black nanomaterials for photothermal antibacterial applications[J]. Cell Reports Physical Science, 2021, 2(8): 100535. doi: 10.1016/j.xcrp.2021.100535
[58] WANG Z, BAO J, HE H, et al. Single-Atom iron catalyst activating peroxydisulfate for efficient organic contaminant degradation relying on electron transfer[J]. Chemical Engineering Journal, 2023, 458: 141513. doi: 10.1016/j.cej.2023.141513
[59] AN S, ZHANG G, WANG T, et al. High-Density Ultra-small Clusters and Single-Atom Fe Sites Embedded in Graphitic Carbon Nitride (g-C3 N4 ) for Highly Efficient Catalytic Advanced Oxidation Processes[J]. ACS Nano, 2018, 12(9): 9441-9450. doi: 10.1021/acsnano.8b04693
[60] WEI W, LUO J, LIU S, et al. Enhancing the photocatalytic performance of g-C3N4 by using iron single-atom doping for the reduction of U(VI) in aqueous solutions[J]. Journal of Solid State Chemistry, 2022, 312: 123160. doi: 10.1016/j.jssc.2022.123160
[61] ZHANG Z, ZHANG N, LIU Y, et al. Efficient degradation of organic dyes and reduced Cr(VI) in environmental water purification by in-situ deposition of silver nanoparticles on polydopamine-modified M-ATP/PCN[J]. Catalysis Communications, 2022, 172: 106528. doi: 10.1016/j.catcom.2022.106528
[62] YANG H, LIU X L, HAO M J, et al. Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater[J]. Advanced Materials, 2021, 33(51): e2106621. [PubMed]
[63] YAO Y, LIU X, HU H, et al. Synthesis and characterization of iron-nitrogen-doped biochar catalysts for organic pollutant removal and hexavalent chromium reduction[J]. Journal of Colloid and Interface Science, 2022, 610: 334-346. doi: 10.1016/j.jcis.2021.11.187
[64] HOU H, FANG L, LIU L, et al. Efficient iron single-atom materials for environmental pollutants removal from aqueous solutions: A review[J]. Journal of Cleaner Production, 2023, 426: 139150. doi: 10.1016/j.jclepro.2023.139150