[1] 白文文, 秦彩虹, 郑洋, 等. 介质阻挡放电联合锰基催化剂对乙酸乙酯的降解效果[J]. 环境工程学报, 2020, 14(5): 1294-1303. doi: 10.12030/j.cjee.201907089
[2] 王保伟, 董博, 刘震, 等. 双室介质阻挡放电等离子体反应器降解亚甲基蓝[J]. 环境工程学报, 2017, 11(4): 2103-2112. doi: 10.12030/j.cjee.201510214
[3] RAY D, YE P, JIMMY C Y, et al. Recent progress in plasma-catalytic conversion of CO2 to chemicals and fuels[J]. Catalysis Today, 2023, 423: 113973. doi: 10.1016/j.cattod.2022.12.004
[4] GEORGE A, SHEN B X, CRAVEN M, et al. A review of non-thermal plasma technology: A novel solution for CO2 conversion and utilization[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 109702. doi: 10.1016/j.rser.2020.109702
[5] KAMKENG A D N, WANG M H, HU J, et al. Transformation technologies for CO2 utilisation: Current status, challenges and future prospects[J]. Chemical Engineering Journal, 2021, 409: 128138. doi: 10.1016/j.cej.2020.128138
[6] VAN DE S A, VIEGAS P, SILVA A, et al. Redefining the microwave plasma-mediated CO2 reduction efficiency limit: The role of O–CO2 association[J]. ACS Energy Letters, 2021, 6(8): 2876-2881. doi: 10.1021/acsenergylett.1c01206
[7] LUO Y, YUE X F, ZHANG H L, et al. Recent advances in energy efficiency optimization methods for plasma CO2 conversion[J]. Science of the Total Environment, 2023, 167486.
[8] MEI D, TU X. Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: effects of plasma processing parameters and reactor design[J]. Journal of CO2 Utilization, 2017, 19: 68-78. doi: 10.1016/j.jcou.2017.02.015
[9] WANG B W, WANG X X, ZHANG B. Dielectric barrier micro-plasma reactor with segmented outer electrode for decomposition of pure CO2[J]. Frontiers of Chemical Science and Engineering, 2021, 15: 687-697. doi: 10.1007/s11705-020-1974-1
[10] RAY D, CHAWDHURY P, BHARGAVI K, et al. Ni and Cu oxide supported γ-Al2O3 packed DBD plasma reactor for CO2 activation[J]. Journal of CO2 Utilization, 2021, 44: 101400. doi: 10.1016/j.jcou.2020.101400
[11] LI J, ZHAI X W, MA C H, et al. DBD plasma combined with different foam metal electrodes for CO2 decomposition: experimental results and DFT validations[J]. Nanomaterials, 2019, 9(11): 1595. doi: 10.3390/nano9111595
[12] WANG L, DU X M, YI Y H, et al. Plasma-enhanced direct conversion of CO2 to CO over oxygen-deficient Mo-doped CeO2[J]. Chemical Communications, 2020, 56(94): 14801-14804. doi: 10.1039/D0CC06514E
[13] JAHANBAKHSH M R, TAGHVAEI H, KHALIFEH O, et al. Low-temperature CO2 splitting in a noncatalytic dielectric-barrier discharge plasma: Effect of operational parameters with a new strategy of experimentation[J]. Energy & Fuels, 2020, 34(11): 14321-14332.
[14] ZHANG H, LI L, LI X D, et al. Warm plasma activation of CO2 in a rotating gliding arc discharge reactor[J]. Journal of CO2 Utilization, 2018, 27: 472-479. doi: 10.1016/j.jcou.2018.08.020
[15] SUN S R, WANG H X, MEI D H, et al. CO2 conversion in a gliding arc plasma: Performance improvement based on chemical reaction modeling[J]. Journal of CO2 Utilization, 2017, 17: 220-234. doi: 10.1016/j.jcou.2016.12.009
[16] LA T G, LAU G K. Inhibiting electro-thermal breakdown of acrylic dielectric elastomer actuators by dielectric gel coating[J]. Applied Physics Letters, 2016, 108(1): 5.
[17] WANG W T, MA Y, CHEN G X, et al. Enhanced hydrogen production using a tandem biomass pyrolysis and plasma reforming process[J]. Fuel Processing Technology, 2022, 234: 107333. doi: 10.1016/j.fuproc.2022.107333
[18] WANG L, YI Y H, GUO H C, et al. Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2[J]. Acs Catalysis, 2018, 8(1): 90-100. doi: 10.1021/acscatal.7b02733
[19] ZHOU A M, CHEN D, DAI B, et al. Direct decomposition of CO2 using self‐cooling dielectric barrier discharge plasma[J]. Greenhouse Gases: Science and Technology, 2017, 7(4): 721-730. doi: 10.1002/ghg.1683
[20] DAMIDEH V, CHIN O H, GABBAR H A, et al. Study of ozone concentration from CO2 decomposition in a water cooled coaxial dielectric barrier discharge[J]. Vacuum, 2020, 177: 109370. doi: 10.1016/j.vacuum.2020.109370
[21] KARIMIFARD S, MOGHADDAM M R A. Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review[J]. Science of the Total Environment, 2018, 640: 772-797.
[22] 李维维, 张永显, 袁忠玲, 等. 硫自养短程反硝化探究及响应面法回收单质硫[J]. 中国环境科学, 2023, 43(1): 217-224.
[23] SNOECKX R, BOGAERTS A. Plasma technology-a novel solution for CO2 conversion?[J]. Chemical Society Reviews, 2017, 46(19): 5805-5863. doi: 10.1039/C6CS00066E
[24] NIU G H, LI Y P, TANG J, et al. Optical and electrical analysis of multi-electrode cylindrical dielectric barrier discharge (DBD) plasma reactor[J]. Vacuum, 2018, 157: 465-474. doi: 10.1016/j.vacuum.2018.09.025
[25] 王小西, 李笑艳, 王保伟. 介质阻挡放电微等离子体分解二氧化碳研究[J]. 化工学报, 2022, 73(3): 1343-1350.
[26] LI L, ZHANG H, LI X D, et al. Plasma-assisted CO2 conversion in a gliding arc discharge: Improving performance by optimizing the reactor design[J]. Journal of CO2 Utilization, 2019, 29: 296-303. doi: 10.1016/j.jcou.2018.12.019
[27] 张秋月. 等离子体微放电空间设计及CO2分解催化剂缺陷调控[D]. 石河子: 石河子大学, 2023.
[28] TU X, GALLON H J, TWIGG M V, et al. Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor[J]. Journal of Physics D: Applied Physics, 2011, 44(27): 274007. doi: 10.1088/0022-3727/44/27/274007
[29] 王保伟, 姚淑美, 彭叶平, 等. 介质阻挡放电等离子体降解高浓度甲苯[J]. 环境工程学报, 2018, 12(7): 1977-1985. doi: 10.12030/j.cjee.201801156
[30] LI J, ZHANG X Q, SHEN J, et al. Dissociation of CO2 by thermal plasma with contracting nozzle quenching[J]. Journal of CO2 Utilization, 2017, 21: 72-76. doi: 10.1016/j.jcou.2017.04.003
[31] JOSHI N, LOGANATHAN S. Methanol synthesis from CO2 using Ni and Cu supported Fe catalytic system: understanding the role of nonthermal plasma surface discharge[J]. Plasma Processes and Polymers, 2021, 18(5): 2000104. doi: 10.1002/ppap.202000104
[32] WANG A G, HARRHY J H, MENG S J, et al. Nonthermal plasma-catalytic conversion of biogas to liquid chemicals with low coke formation[J]. Energy Conversion and Management, 2019, 191: 93-101. doi: 10.1016/j.enconman.2019.04.026
[33] MA X T, LI S R, RONDA-LLORET M, et al. Plasma assisted catalytic conversion of CO2 and H2O Over Ni/Al2O3 in a DBD reactor[J]. Plasma Chemistry and Plasma Processing, 2018, 39(1): 109-124.
[34] NAVASCUÉS P, COTRINO J, GONZÁLEZ-ELIPE A R, et al. Plasma assisted CO2 dissociation in pure and gas mixture streams with a ferroelectric packed-bed reactor in ambient conditions[J]. Chemical Engineering Journal, 2022, 430: 133066. doi: 10.1016/j.cej.2021.133066
[35] LI X S, LI Y C, WANG L Y, et al. Real‐time measurement of axial temperature in a coaxial dielectric barrier discharge reactor and synergistic effect evaluation for in‐plasma catalytic CO2 reduction[J]. Plasma Processes and Polymers, 2022, 19(5): 2100229. doi: 10.1002/ppap.202100229
[36] WU P Y, LI X, ULLAH N, et al. Synergistic effect of catalyst and plasma on CO2 decomposition in a dielectric barrier discharge plasma reactor[J]. Molecular Catalysis, 2021, 499: 111304. doi: 10.1016/j.mcat.2020.111304
[37] SNOECKX R, OZKAN A, RENIERS F, et al. The quest for value‐added products from carbon dioxide and water in a dielectric barrier discharge: a chemical kinetics study[J]. ChemSusChem, 2017, 10(2): 409-424. doi: 10.1002/cssc.201601234
[38] XU S J, WHITEHEAD J C, MARTIN P A. CO2 conversion in a non-thermal, barium titanate packed bed plasma reactor: The effect of dilution by Ar and N2[J]. Chemical Engineering Journal, 2017, 327: 764-773. doi: 10.1016/j.cej.2017.06.090
[39] LU N, LIU N, ZHANG C K, et al. CO2 conversion promoted by potassium intercalated g-C3N4 catalyst in DBD plasma system[J]. Chemical Engineering Journal, 2021, 417: 129283. doi: 10.1016/j.cej.2021.129283
[40] ZHANG K, HARVEY A P. CO2 decomposition to CO in the presence of up to 50% O2 using a non-thermal plasma at atmospheric temperature and pressure[J]. Chemical Engineering Journal, 2021, 405: 126625. doi: 10.1016/j.cej.2020.126625
[41] RONDA-LLORET M, WANG Y L, OULEGO P, et al. CO2 hydrogenation at atmospheric pressure and low temperature using plasma-enhanced catalysis over supported cobalt oxide catalysts[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17397-17407.
[42] MEI D H, LIU S Y, TU X. CO2 reforming with methane for syngas production using a dielectric barrier discharge plasma coupled with Ni/γ-Al2O3 catalysts: Process optimization through response surface methodology[J]. Journal of CO2 Utilization, 2017, 21: 314-326. doi: 10.1016/j.jcou.2017.06.020
[43] RAY D, NEPAK D, JANAMPELLI S, et al. Dry reforming of methane in DBD plasma over Ni‐based catalysts: Influence of process conditions and support on performance and durability[J]. Energy Technology, 2019, 7(4): 1801008. doi: 10.1002/ente.201801008
[44] MIKHAIL M, COSTA P D, AMOUROUX J, et al. Effect of Na and K impurities on the performance of Ni/CeZrOx catalysts in DBD plasma-catalytic CO2 methanation[J]. Fuel, 2021, 306: 121639. doi: 10.1016/j.fuel.2021.121639
[45] NIU G H, QIN Y, LI W W, et al. Investigation of CO2 splitting process under atmospheric pressure using multi-electrode cylindrical DBD plasma reactor[J]. Plasma Chemistry and Plasma Processing, 2019, 39: 809-824. doi: 10.1007/s11090-019-09955-y
[46] 孙万启, 宋华, 白书培, 等. 线-板式介质阻挡放电反应器的优化[J]. 环境工程学报, 2016, 10(10): 5827-5832. doi: 10.12030/j.cjee.201504019
[47] MA X Z, ALBERTSMA J, GABRIELS D, et al. Carbon monoxide separation: Past, present and future[J]. Chemical Society Reviews, 2023, 52: 3741-3777. doi: 10.1039/D3CS00147D
[48] PEREZ-CARBAJO J, MATITO-MARTOS I, BALESTRA S R G, et al. Zeolites for CO2-CO-O2 separation to obtain CO2-neutral fuels[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20512-20520.
[49] LIU S, WINTER L R, CHEN J G. Review of plasma-assisted catalysis for selective generation of Oxygenates from CO2 and CH4[J]. ACS Catalysis, 2020, 10(4): 2855-2871. doi: 10.1021/acscatal.9b04811
[50] 高远, 窦立广, 李江伟, 等. 低温等离子体-催化剂协同催化CO2转化进展[J]. 高电压技术, 2022, 48: 1607-1619.
[51] WANG B W, WANG X X, SU H J. Influence of electrode interval and barrier thickness in the segmented electrode micro-plasma DBD reactor on CO2 decomposition[J]. Plasma Chemistry and Plasma Processing, 2020, 40(5): 1189-1206. doi: 10.1007/s11090-020-10091-1
[52] 陈慧敏, 段戈辉, 梅丹华, 等. 气体添加对水电极同轴介质阻挡放电直接分解CO2的影响[J]. 电工技术学报, 2023, 38(1): 270-280.