[1] |
DU J, LIU Q, PAN Y, et al. The research status, potential hazards and toxicological mechanisms of fluoroquinolone antibiotics in the environment[J]. Antibiotics, 2023, 12(6): 1058. doi: 10.3390/antibiotics12061058
|
[2] |
CHEN Z, HE G, YOU T, et al. Complex pollution of Fluoroquinolone antibiotics and metal oxides/metal ions in water: a review on occurrence, formation mechanisms, removal and ecotoxicity[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 112191. doi: 10.1016/j.jece.2024.112191
|
[3] |
ZHU F, WU Y, LIANG Y, et al. Degradation mechanism of norfloxacin in water using persulfate activated by BC@nZVI/Ni[J]. Chemical Engineering Journal, 2020, 389: 124276. doi: 10.1016/j.cej.2020.124276
|
[4] |
WANG C, YU G, CHEN H, et al. Degradation of norfloxacin by hydroxylamine enhanced Fenton system: Kinetics, mechanism and degradation pathway[J]. Chemosphere, 2021, 270: 129408. doi: 10.1016/j.chemosphere.2020.129408
|
[5] |
孙磊, 秦文磊, 吴广宇, 等. 基于臭氧的组合氧化法降解有机污染物研究进展[J]. 水处理技术, 2020, 46(6): 9-14.
|
[6] |
吴娜娜, 钱虹, 李亚峰. 水中磺胺类抗生素去除技术研究进展[J]. 建筑与预算, 2017(6): 43-50.
|
[7] |
KOUNDLE P, NIRMALKAR N, MOMOTKO M, et al. Ozone nanobubble technology as a novel AOPs for pollutants degradation under high salinity conditions[J]. Water Research, 2024: 122148.
|
[8] |
JIANG Z, ABDOULAYE M G, WEI T, et al. Treatment of Eucalyptus chemical-mechanical pulp wastewater by coupling system of advanced catalytic oxidation and biodegradation: Synergistic effect of ozonation photocatalytic-microbial[J]. Journal of Water Process Engineering, 2023, 55: 104071. doi: 10.1016/j.jwpe.2023.104071
|
[9] |
ZHANG J, LV S, YU Q, et al. Degradation of sulfamethoxazole in microbubble ozonation process: Performance, reaction mechanism and toxicity assessment[J]. Separation and Purification Technology, 2023, 311: 123262. doi: 10.1016/j.seppur.2023.123262
|
[10] |
CHENG Y, ZHENG F, DONG H, et al. Enhanced oxidation of micropollutants by ozone/ferrate(VI) process: Performance, mechanism, and toxicity assessment[J]. Journal of Water Process Engineering, 2023, 55: 104211. doi: 10.1016/j.jwpe.2023.104211
|
[11] |
WOJNÁROVITS L, HOMLOK R, KOVÁCS K, et al. Oxidation and mineralization rates of harmful organic chemicals in hydroxyl radical induced reactions[J]. Ecotoxicology and Environmental Safety, 2024, 281: 116669. doi: 10.1016/j.ecoenv.2024.116669
|
[12] |
胡晋博. 臭氧-臭氧/紫外工艺对市政污水中微量有机污染物的降解及机理研究[D]. 赣州: 江西理工大学, 2021.
|
[13] |
LI P, TAKAHASHI M, CHIBA K. Degradation of phenol by the collapse of microbubbles[J]. Chemosphere, 2009, 75(10): 1371-1375. doi: 10.1016/j.chemosphere.2009.03.031
|
[14] |
JOHN, BROOKES A, CARRA I, et al. Microbubbles and their application to ozonation in water treatment: a critical review exploring their benefit and future application[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(9): 1561-1603. doi: 10.1080/10643389.2020.1860406
|
[15] |
VERINDA S, MUNIROH M, YULIANTO E, et al. Degradation of ciprofloxacin in aqueous solution using ozone microbubbles: spectroscopic, kinetics, and antibacterial analysis[J]. Heliyon, 2022, 8(8): e10137. doi: 10.1016/j.heliyon.2022.e10137
|
[16] |
YAO K, CHI Y, WANG F, et al. The effect of microbubbles on gas-liquid mass transfer coefficient and degradation rate of cod in wastewater treatment[J]. Water Science and Technology, 2016, 73(8): 1969-1977. doi: 10.2166/wst.2016.018
|
[17] |
PARMAR R, MAJUMDER S K. Microbubble generation and microbubble-aided transport process intensification—A state-of-the-art report[J]. Chemical Engineering and Processing: Process Intensification[J], 2013, 64: 79-97. doi: 10.1016/j.cep.2012.12.002
|
[18] |
AKHTAR J, AMIN N S, ARIS A. Combined adsorption and catalytic ozonation for removal of sulfamethoxazole using Fe2O3/CeO2 loaded activated carbon[J]. Chemical Engineering Journal, 2011, 170(1): 136-144. doi: 10.1016/j.cej.2011.03.043
|
[19] |
FARIA P C C, ÓRFÃO J J M, PEREIRA M F R. Catalytic ozonation of sulfonated aromatic compounds in the presence of activated carbon[J]. Applied Catalysis B: Environmental, 2008, 83(1): 150-159.
|
[20] |
LIU T, ZHANG B, LI W, et al. The catalytic oxidation process of atrazine by ozone microbubbles: Bubble formation, ozone mass transfer and hydroxyl radical generation[J]. Chemosphere, 2023, 325: 138361. doi: 10.1016/j.chemosphere.2023.138361
|
[21] |
XIAO W, ZHANG H, WANG X, et al. Interaction Mechanisms and Application of Ozone Micro/Nanobubbles and Nanoparticles: A Review and Perspective[J]. Nanomaterials, 2022, 12(12): 1958. doi: 10.3390/nano12121958
|
[22] |
TEGZE A, SÁGI G, KOVÁCS K, et al. Radiation induced degradation of ciprofloxacin and norfloxacin: Kinetics and product analysis[J]. Radiation Physics and Chemistry, 2019, 158: 68-75. doi: 10.1016/j.radphyschem.2019.01.025
|
[23] |
LU C, GU J, WEI G, et al. Three-dimensional electro-Fenton degradation of ciprofloxacin catalyzed by CuO doped red mud particle electrodes: Influencing factors, possible degradation pathways and energy consumption[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107737. doi: 10.1016/j.jece.2022.107737
|
[24] |
ZHANG J, LIU M, PANG B, et al. Ciprofloxacin degradation in microbubble ozonation combined with electro-generated H2O2 process: Operational parameters and oxidation mechanism[J]. Separation and Purification Technology, 2023, 325: 124676. doi: 10.1016/j.seppur.2023.124676
|
[25] |
ZHENG T, WANG Q, ZHANG T, et al. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry[J]. Journal of Hazardous Materials, 2015, 287: 412-420. doi: 10.1016/j.jhazmat.2015.01.069
|
[26] |
HE Y, CAI Y, FAN S, et al. Hydroxyl radicals can significantly influence the toxicity of ofloxacin transformation products during ozonation[J]. Journal of Hazardous Materials, 2022, 438: 129503. doi: 10.1016/j.jhazmat.2022.129503
|
[27] |
WEN X, NIU C, HUANG D, et al. Study of the photocatalytic degradation pathway of norfloxacin and mineralization activity using a novel ternary Ag/AgCl-CeO2 photocatalyst[J]. Journal of Catalysis, 2017, 355: 73-86. doi: 10.1016/j.jcat.2017.08.028
|