[1] |
O’CONNOR J, BOLAN N S, KUMAR M, et al. Distribution, transformation and remediation of poly- and per-fluoroalkyl substances (PFAS) in wastewater sources[J]. Process Safety and Environmental Protection, 2022, 164: 91-108. doi: 10.1016/j.psep.2022.06.002
|
[2] |
宋洋洋. 含氟尾玻璃纤维棉对典型挥发性全氟化合物的吸附研究[D]. 武汉: 江汉大学, 2023.
SONG Y Y. Study on adsorption of typical volatile perfluorinated compounds by fluorine-containing glass fibers[D]. Wuhan: Jianghan University, 2023(in Chineses).
|
[3] |
谢刘伟. 珠江三角洲大气中全氟化合物污染特征分析[D]. 深圳: 深圳大学, 2015.
XIE L W. Analysis on pollution characteristics of perfluorinated compounds in the air of Pearl River delta [D]. Shenzhen: Shenzhen University, 2015(in Chinese).
|
[4] |
朱海林. 国外哈龙替代物的替代技术概况[J]. 化工劳动保护, 1996(5): 16-17.
ZHU H L. General situation of substitution technology of halon substitutes abroad [J]. Safety Health & Environment, 1996(5): 16-18(in Chinese).
|
[5] |
汤峤永, 姚素梅. 环保型绝缘气体全氟五碳酮的应用及生产工艺[J]. 有机氟工业, 2018(4): 37-40.
TANG Q Y, YAO S M. Technology and application of C5 perfluorinated ketone.[J]. Organo-Fluorine Industry, 2018(4): 37-40(in Chinese).
|
[6] |
金小贤, 夏致远, 金向华. 碳酰氟的研究进展[J]. 低温与特气, 2017, 35(1): 1-3,6. doi: 10.3969/j.issn.1007-7804.2017.01.001
JIN X X, XIA Z Y, JIN X H. Research progress of carbonyl fluoride[J]. Low Temperature and Specialty Gases, 2017, 35(1): 1-3,6(in Chinese). doi: 10.3969/j.issn.1007-7804.2017.01.001
|
[7] |
江长楠. 全氟己酮灭火剂的应用及展望[J]. 山东化工, 2023, 52(21): 163-164,167. doi: 10.3969/j.issn.1008-021X.2023.21.045
JIANG Z N. Application and prospect of perfluorohexanone fire extinguishing agent[J]. Shandong Chemical Industry, 2023, 52(21): 163-164,167(in Chinese). doi: 10.3969/j.issn.1008-021X.2023.21.045
|
[8] |
ZHANG H, MENG X, YANG Q, et al. Toward Better Halon Substitutes: Theoretical and Experimental Studies on the Pyrolysis Mechanism and Fire-Suppressing Performance of C5F10O(Perfluoro-3-methyl-2-butanone)[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(3): 1272-1285.
|
[9] |
周文俊, 郑宇, 杨帅, 等. 替代SF6的环保型绝缘气体研究进展与趋势[J]. 高压电器, 2016, 52(12): 8-14.
ZHOU W J, ZHENG Y, YANG S, et al. Research progress and trend of SF6 altenative with environmrnt friendly insulation gas[J]. High Voltage Apparatus, 2016, 52(12): 8-14(in Chinese).
|
[10] |
REN Y G, BERNARD F, DAËLE V, et al. Atmospheric fate and impact of perfluorinated butanone and pentanone[J]. Environmental Science & Technology, 2019, 53(15): 8862-8871.
|
[11] |
乐炳均. 酰氟化合物的合成与反应研究[D]. 上海: 上海应用技术大学, 2021.
LE B J. Study on synthesis and reaction of acyl fluoride compounds[D]. Shanghai: Shanghai Institute of Technology, 2021(in Chinese).
|
[12] |
柴华, 李峰, 赵新堂, 等. 碳酰氟研究的最新进展[J]. 低温与特气, 2018, 36(1): 4-9. doi: 10.3969/j.issn.1007-7804.2018.01.002
CHAI H, LI F, ZHAO X T, et al. Resent progress in the study of carbonyl fluoride[J]. Low Temperature and Specialty Gases, 2018, 36(1): 4-9(in Chinese). doi: 10.3969/j.issn.1007-7804.2018.01.002
|
[13] |
周永言, 欧阳洪生, 李丽, 等. 三氟乙酰氟的制备研究进展[J]. 浙江化工, 2019, 50(12): 1-3. doi: 10.3969/j.issn.1006-4184.2019.12.001
ZHOU Y Y, OUYANG H S, LI L, et al. Progress in preparation of trifluoroacetyl fluoride[J]. Zhejiang Chemical Industry, 2019, 50(12): 1-3(in Chinese). doi: 10.3969/j.issn.1006-4184.2019.12.001
|
[14] |
白智勇, 姚素梅. 全氟丙酰氟的合成及用于该反应催化剂的制备[J]. 有机氟工业, 2023(3): 5-7.
BAI Z Y, YAO S M. Synthesis of perfluoropropionyl fluoride and preparation of catalyst for the reaction[J]. Organo-Fluorine Industry, 2023(3): 5-7(in Chinese).
|
[15] |
张超, 陈建, 王焜, 等. 五氟丙酰氟的制备及应用[J]. 浙江化工, 2024, 55(2): 1-5.
ZHANG C, CHEN J, WANG K, et al. Preparation and application of pentafluoropropionyl fluoride[J]. Zhejiang Chemical Industry, 2024, 55(2): 1-5(in Chinese).
|
[16] |
任章顺, 苗成才, 张金彪, 等. 全氟异丁酰氟的制备及应用[J]. 化学推进剂与高分子材料, 2021, 19(5): 27-30.
REN Z S, MIAO C C, ZHANG J B, et al. Preparation and application of perfluoroisobutyryl fluoride[J]. Chemical Propellants & Polymeric Materials, 2021, 19(5): 27-30(in Chinese).
|
[17] |
李诗涵. 全氟己酮灭火浓度测试技术研究[D]. 南京: 南京理工大学, 2018.
LI S H. Study on testing technology of perfluorohexanone fire extinguishing concentration[D]. Nanjing: Nanjing University of Science and Technology, 2018(in Chinese).
|
[18] |
邱堪辉. 碳酰氟制备研究进展[J]. 浙江化工, 2023, 54(3): 1-5. doi: 10.3969/j.issn.1006-4184.2023.03.001
QIU K H. Research progress in preparation of carbonyl fluoride[J]. Zhejiang Chemical Industry, 2023, 54(3): 1-5(in Chinese). doi: 10.3969/j.issn.1006-4184.2023.03.001
|
[19] |
JACKSON D A, YOUNG C J, HURLEY M D, et al. Atmospheric degradation of perfluoro-2-methyl-3-pentanone: Photolysis, hydrolysis and hydration[J]. Environmental Science & Technology, 2011, 45(19): 8030-8036.
|
[20] |
MONKS P S, GRANIER C, FUZZI S, et al. Atmospheric composition change–global and regional air quality[J]. Atmospheric Environment, 2009, 43(33): 5268-5350. doi: 10.1016/j.atmosenv.2009.08.021
|
[21] |
MAIZE K, CHRISTOFFERSON J, SHAKOURI A. Transient thermal imaging using thermoreflectance[C]//2008 Twenty-fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium. March 16-20, 2008, San Jose, CA. IEEE, 2008: 55-58.
|
[22] |
FU Y W, RONG M Z, YANG K, et al. Calculated rate constants of the chemical reactions involving the main byproducts SO2F, SOF2, SO2F2 of SF6 decomposition in power equipment[J]. Journal of Physics D: Applied Physics, 2016, 49(15): 155502. doi: 10.1088/0022-3727/49/15/155502
|
[23] |
ONO R, ODA T. Measurement of gas temperature and OH density in the afterglow of pulsed positive corona discharge[J]. Journal of Physics D: Applied Physics, 2008, 41(3): 035204. doi: 10.1088/0022-3727/41/3/035204
|
[24] |
YIN H, GAO G, LIU K, et al. Decomposition properties of two phase immersion cooling medium C6F12O: A computational study[J]. Chemical Physics Letters, 2022, 794: 139505. doi: 10.1016/j.cplett.2022.139505
|
[25] |
LU X, WANG X L, LI Q M, et al. A ReaxFF-based molecular dynamics study of the pyrolysis mechanism of polyimide[J]. Polymer Degradation and Stability, 2015, 114: 72-80. doi: 10.1016/j.polymdegradstab.2015.02.004
|
[26] |
TANIGUCHI N, WALLINGTON T J, HURLEY M D, et al. Atmospheric chemistry of C2F5C(O)CF(CF3)2: photolysis and reaction with Cl atoms, OH radicals, and ozone[J]. The Journal of Physical Chemistry A, 2003, 107(15): 2674-2679. doi: 10.1021/jp0220332
|
[27] |
ADI M A, ALTARAWNEH M. Atmospheric oxidation of unsaturated hydrofluoroethers initiated by OH radicals[J]. Atmospheric Environment, 2023, 307: 119843. doi: 10.1016/j.atmosenv.2023.119843
|
[28] |
D’ANNA B, SELLEVÅG S R, WIRTZ K, et al. Photolysis study of perfluoro-2-methyl-3-pentanone under natural sunlight conditions[J]. Environmental Science & Technology, 2005, 39(22): 8708-8711.
|
[29] |
DÍAZ-DE-MERA Y, ARANDA A, NOTARIO A, et al. Photolysis study of fluorinated ketones under natural sunlight conditions[J]. Physical Chemistry Chemical Physics, 2015, 17(35): 22991-22998. doi: 10.1039/C5CP03527A
|
[30] |
SCOTT B F, SPENCER C, MABURY S A, et al. Poly and perfluorinated carboxylates in North American precipitation[J]. Environmental Science & Technology, 2006, 40(23): 7167-7174.
|
[31] |
TATARINOV A V, BILERA I V, AVTAEVA S V, et al. Dielectric barrier discharge processing of trans-CF3CH=CHF and CF3C(O)CF(CF3)2, their mixtures with air, N2, CO2 and analysis of their decomposition products[J]. Plasma Chemistry and Plasma Processing, 2015, 35(5): 845-862. doi: 10.1007/s11090-015-9635-8
|
[32] |
严晓瑜, 杨苑媛, 纳丽, 等. 银川紫外辐射特征及TUV模式适用性研究[J]. 环境科学学报, 2021, 41(9): 3735-3744.
YAN X Y, YANG Y Y, NA L, et al. Research on the characteristics of ultraviolet radiation in Yinchuan and applicability of TUV model[J]. Acta Scientiae Circumstantiae, 2021, 41(9): 3735-3744(in Chinese).
|
[33] |
YU X J, HOU H, WANG B S. Atmospheric chemistry of perfluoro-3-methyl-2-butanone[CF3C(O)CF(CF3)2]: Photodissociation and reaction with OH radicals[J]. The Journal of Physical Chemistry. A, 2018, 122(45): 8840-8848. doi: 10.1021/acs.jpca.8b09111
|
[34] |
ADAMO C, JACQUEMIN D. The calculations of excited-state properties with Time-Dependent Density Functional Theory[J]. Chemical. Society. Reviews., 2013, 42(3): 845-856. doi: 10.1039/C2CS35394F
|
[35] |
WERNER H J, KNOWLES P J. A second order multiconfiguration SCF procedure with optimum convergence[J]. The Journal of Chemical Physics, 1985, 82(11): 5053-5063. doi: 10.1063/1.448627
|
[36] |
鲁有松. 碳酰氟(CF2O)酸碱催化水解机理的量子化学及分子动力学模拟[D]. 西安: 陕西师范大学, 2021.
LU Y S. Quantum chemistry and molecular dynamics simulation of the acid-base catalytic hydrolysis mechanism of carbonyl fluoride (CF2O)[D]. Xi’an: Shaanxi Normal University, 2021(in Chinese).
|
[37] |
UCHIMARU T, TSUZUKI S, SUGIE M, et al. Ab initio study of the hydrolysis of carbonyl difluoride (CF2O): Importance of an additional water molecule[J]. Chemical Physics Letters, 2004, 396(1/2/3): 110-116.
|
[38] |
ZANDER R, RINSLAND C P, MAHIEU E, et al. Increase of carbonyl fluoride (COF2) in the stratosphere and its contribution to the 1992 budget of inorganic fluorine in the upper stratosphere[J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D8): 16737-16743. doi: 10.1029/94JD01029
|
[39] |
GEORGE C, SAISON J Y, PONCHE J L, et al. Kinetics of mass transfer of carbonyl fluoride, trifluoroacetyl fluoride, and trifluoroacetyl chloride at the air/water interface[J]. The Journal of Physical Chemistry, 1994, 98(42): 10857-10862. doi: 10.1021/j100093a029
|
[40] |
de BRUYN W J, SHORTER J A, DAVIDOVITS P, et al. Uptake of haloacetyl and carbonyl halides by water surfaces[J]. Environmental Science & Technology, 1995, 29(5): 1179-1185.
|
[41] |
FRANCISCO J S. A study of the gas-phase reaction of carbonyl fluoride with water[J]. Journal of Atmospheric Chemistry, 1993, 16(3): 285-292. doi: 10.1007/BF00696901
|
[42] |
HU Y X, JIANG C X, FANG L, et al. Effect of HF treatment on the photoelectrochemical properties of a hematite thin film photoanode for water splitting[J]. Acta Physico-Chimica Sinica, 2014, 30(6): 1099-1106. doi: 10.3866/PKU.WHXB201404282
|
[43] |
BIERBRAUER K L, CHIAPPERO M S, MALANCA F E, et al. Photochemistry of perfluoroacetyl fluoride Kinetics of the reaction between CF3 and FCO radicals[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 122(2): 73-78. doi: 10.1016/S1010-6030(98)00431-6
|
[44] |
ASLANIDI E B, ZARUBIN V T, TURISHCHEV Y S. The investigation of dissociation of trifluoroacetyl fluoride in the field of pulsed CO2 laser[J]. Laser Chemistry, 1986, 6(6): 373-380. doi: 10.1155/LC.6.373
|
[45] |
ROEHL C M, BOGLU D, BRÜHL C, et al. Infrared band intensities and global warming potentials of CF4, C2F 6, C3F8, C4F10, C5F12, and C6F14[J]. Geophysical Research Letters, 1995, 22(7): 815-818. doi: 10.1029/95GL00488
|
[46] |
WEIBEL D E, de VÖHRINGER C M, STARICCO E H, et al. Quantum yield of photolysis of perfluoroacetyl fluoride vapour: Possible source of CF3 radicals[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1992, 63(1): 1-6. doi: 10.1016/1010-6030(92)85146-L
|
[47] |
FRANCISCO J S. Gas-phase hydrolysis of trifluoromethyl carbonyl halides to trifluoroacetic acid[J]. The Journal of Physical Chemistry, 1992, 96(12): 4894-4899. doi: 10.1021/j100191a032
|
[48] |
SONG X L. Catalytic hydrolyses of trifluoroacetyl fluoride by water[J]. Chemical Physics Letters, 2018, 713: 137-144. doi: 10.1016/j.cplett.2018.10.038
|
[49] |
ALTARAWNEH M. A theoretical study on the pyrolysis of perfluorobutanoic acid as a model compound for perfluoroalkyl acids[J]. Tetrahedron Letters, 2012, 53(32): 4070-4073. doi: 10.1016/j.tetlet.2012.05.109
|
[50] |
CARIATI S A, WEIBEL D E, STARICCO E H. Gas phase photochemistry of perfluoropropyl fluoride and perfluoropropyl chloride[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 123(1/2/3): 1-5.
|
[51] |
余明高, 廖光煊, 张和平, 等. 哈龙替代产品的研究现状及发展趋势[J]. 火灾科学, 2002, 11(2): 108-112,125. doi: 10.3969/j.issn.1004-5309.2002.02.010
YU M G, LIAO G X, ZHANG H P. Research situation and development tendency of halon substitutes[J]. Fire Safety Science, 2002, 11(2): 108-112,125(in Chinese). doi: 10.3969/j.issn.1004-5309.2002.02.010
|
[52] |
Tapscott R E, Moore T A, Mather J D, et al. Halon replacement research - A historical review of technical progress and regulatory decision points[J]. Halon Options Technical Working Conference, 1998, 1: 17-22.
|
[53] |
BENEDICK. Montreal protocol on substances that deplete the ozone layer[J]. International Negotiation, 1996, 1(2): 231-246. doi: 10.1163/15718069620847781
|
[54] |
张艳利, 黄晓晴, 王仪, 等. 中国消耗臭氧层物质和含氟温室气体研究进展[J]. 矿物岩石地球化学通报, 2024, 43(5): 896,921-945.
ZHANG Y L, HUANG X Q, WANG Y, et al. A review of ozone-depleting substances and fluorinated greenhouse gases in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024, 43(5): 896,921-945(in Chinese).
|
[55] |
GUO L Y, YANG Y, FRASER P J, et al. Projected increases in emissions of high global warming potential fluorinated gases in China[J]. Communications Earth & Environment, 2023, 4: 205.
|
[56] |
HEIN R, CRUTZEN P J, HEIMANN M. An inverse modeling approach to investigate the global atmospheric methane cycle[J]. Global Biogeochemical Cycles, 1997, 11(1): 43-76. doi: 10.1029/96GB03043
|
[57] |
HODNEBROG Ø, ETMINAN M, FUGLESTVEDT J S, et al. Global warming potentials and radiative efficiencies of halocarbons and related compounds: A comprehensive review[J]. Reviews of Geophysics, 2013, 51(2): 300-378. doi: 10.1002/rog.20013
|
[58] |
YAO B, FANG X K, VOLLMER M K, et al. China’s hydrofluorocarbon emissions for 2011–2017 inferred from atmospheric measurements[J]. Environmental Science & Technology Letters. 2019, 6, 8, 479–486.
|
[59] |
张怀, 赵纪峥, 张景利. 碳酰氟的制备研究进展[J]. 化学推进剂与高分子材料, 2011, 9(4): 27-33,38. doi: 10.3969/j.issn.1672-2191.2011.04.005
ZHANG H, ZHAO J Z, ZHANG J L. Research progress in preparation of carbonyl fluoride[J]. Chemical Propellants & Polymeric Materials, 2011, 9(4): 27-33,38(in Chinese). doi: 10.3969/j.issn.1672-2191.2011.04.005
|
[60] |
杨墨, 张超杰, 曲燕, 等. 三氟乙酸的环境影响来源及其降解[J]. 环境科学与技术, 2010, 33(6): 5-10.
YANG M, ZHANG C J, QU Y, et al. Environmental impacts, sources and decomposition of trifluoroacetic acid[J]. Environmental Science& Technology, 2010, 33(6): 5-10(in Chinese).
|
[61] |
LU Y Q, LIU L, NING A, et al. Atmospheric sulfuric acid-dimethylamine nucleation enhanced by trifluoroacetic acid[J]. Geophysical Research Letters, 2020, 47(2): e85627.
|
[62] |
OBAMA B. The irreversible momentum of clean energy[J]. Science, 2017, 355(6321): 126-129. doi: 10.1126/science.aam6284
|