[1] |
ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1704-1724.
|
[2] |
CARPENTER E J, JR SMITH K L. Plastics on the Sargasso sea surface[J]. Science, 1972, 175(4027): 1240-1241. doi: 10.1126/science.175.4027.1240
|
[3] |
PANKO J M, CHU J, KREIDER M L, et al. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States[J]. Atmospheric Environment, 2013, 72: 192-199. doi: 10.1016/j.atmosenv.2013.01.040
|
[4] |
Da COSTA J P, SANTOS P S M, DUARTE A C, et al. (Nano)plastics in the environment–Sources, fates and effects[J]. Science of the Total Environment, 2016, 566: 15-26.
|
[5] |
NIZZETTO L, BUSSI G, FUTTER M N, et al. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments[J]. Environmental Science. Processes & Impacts, 2016, 18(8): 1050-1059.
|
[6] |
DRIS R, GASPERI J, ROCHER V, et al. Microplastic contamination in an urban area: A case study in greater Paris[J]. Environmental Chemistry, 2015, 12(5): 592. doi: 10.1071/EN14167
|
[7] |
CHAE Y, AN Y J. Effects of micro- and nanoplastics on aquatic ecosystems: Current research trends and perspectives[J]. Marine Pollution Bulletin, 2017, 124(2): 624-632. doi: 10.1016/j.marpolbul.2017.01.070
|
[8] |
LIU Z Q, LI Y M, PÉREZ E, et al. Polystyrene nanoplastic induces oxidative stress, immune defense, and glycometabolism change in Daphnia pulex: Application of transcriptome profiling in risk assessment of nanoplastics[J]. Journal of Hazardous Materials, 2021, 402: 123778. doi: 10.1016/j.jhazmat.2020.123778
|
[9] |
TER HALLE A, LADIRAT L, GENDRE X, et al. Understanding the fragmentation pattern of marine plastic debris[J]. Environmental Science & Technology, 2016, 50(11): 5668-5675.
|
[10] |
SCHWABL P, KÖPPEL S, KÖNIGSHOFER P, et al. Detection of various microplastics in human stool: A prospective case series[J]. Annals of Internal Medicine, 2019, 171(7): 453-457. doi: 10.7326/M19-0618
|
[11] |
CHANG X R, XUE Y Y, LI J Y, et al. Potential health impact of environmental micro- and nanoplastics pollution[J]. Journal of Applied Toxicology, 2020, 40(1): 4-15. doi: 10.1002/jat.3915
|
[12] |
YANG S L, LI M Z, KONG R Y C, et al. Reproductive toxicity of micro- and nanoplastics[J]. Environment International, 2023, 177: 108002. doi: 10.1016/j.envint.2023.108002
|
[13] |
CHAMAS A, MOON H, ZHENG J J, et al. Degradation rates of plastics in the environment[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3494-3511.
|
[14] |
MAHLER G J, ESCH M B, TAKO E, et al. Oral exposure to polystyrene nanoparticles affects iron absorption[J]. Nature Nanotechnology, 2012, 7(4): 264-271. doi: 10.1038/nnano.2012.3
|
[15] |
XU X, FENG Y D, HAN C J, et al. Autophagic response of intestinal epithelial cells exposed to polystyrene nanoplastics[J]. Environmental Toxicology, 2023, 38(1): 205-215. doi: 10.1002/tox.23678
|
[16] |
HU Q L, WANG H, HE C, et al. Polystyrene nanoparticles trigger the activation of p38 MAPK and apoptosis via inducing oxidative stress in zebrafish and macrophage cells[J]. Environmental Pollution, 2021, 269: 116075. doi: 10.1016/j.envpol.2020.116075
|
[17] |
McCLEMENTS D J, DeLOID G, PYRGIOTAKIS G, et al. The role of the food matrix and gastrointestinal tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps[J]. NanoImpact, 2016, 3: 47-57.
|
[18] |
YIN C Y, ZHAO W L, LIU R, et al. TiO2 particles in seafood and surimi products: Attention should be paid to their exposure and uptake through foods[J]. Chemosphere, 2017, 188: 541-547. doi: 10.1016/j.chemosphere.2017.08.168
|
[19] |
ERSÖZ N, ÇANGA E M, YILDIRIM-ELIKOGLU S, et al. Effect of real food matrix on the behavior and toxicity of TiO2 nanoparticles[J]. J Nanopart Res, 2022, 10: 211.
|
[20] |
ZHANG Z P, ZHANG R J, XIAO H, et al. Development of a standardized food model for studying the impact of food matrix effects on the gastrointestinal fate and toxicity of ingested nanomaterials[J]. NanoImpact, 2019, 13: 13-25. doi: 10.1016/j.impact.2018.11.002
|
[21] |
DeLOID G M, CAO X Q, COREAS R, et al. Incineration-generated polyethylene micro-nanoplastics increase triglyceride lipolysis and absorption in an in vitro small intestinal epithelium model[J]. Environmental Science & Technology, 2022, 56(17): 12288-12297.
|
[22] |
COREAS R, CAO X Q, DeLOID G M, et al. Lipid and protein Corona of food-grade TiO2 nanoparticles in simulated gastrointestinal digestion[J]. NanoImpact, 2020, 20: 100272. doi: 10.1016/j.impact.2020.100272
|
[23] |
LI Y, JIANG K, CAO H, et al. Establishment of a standardized dietary model for nanoparticles oral exposure studies[J]. Food Science & Nutrition, 2021, 9(3): 1441-1451.
|
[24] |
LALOUX L, KASTRATI D, CAMBIER S, et al. The food matrix and the gastrointestinal fluids alter the features of silver nanoparticles[J]. Small, 2020, 16(21): 1907687. doi: 10.1002/smll.201907687
|
[25] |
LI Y, McCLEMENTS D J. Influence of non-ionic surfactant on electrostatic complexation of protein-coated oil droplets and ionic biopolymers (alginate and chitosan)[J]. Food Hydrocolloids, 2013, 33(2): 368-375. doi: 10.1016/j.foodhyd.2013.04.016
|
[26] |
LIU Y J, HU Y B, YANG C, et al. Aggregation kinetics of UV irradiated nanoplastics in aquatic environments[J]. Water Research, 2019, 163: 114870. doi: 10.1016/j.watres.2019.114870
|
[27] |
LU S H, ZHU K R, SONG W C, et al. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions[J]. Science of the Total Environment, 2018, 630: 951-959. doi: 10.1016/j.scitotenv.2018.02.296
|
[28] |
ZHOU P F, GUO M F, CUI X Y. Effect of food on orally-ingested titanium dioxide and zinc oxide nanoparticle behaviors in simulated digestive tract[J]. Chemosphere, 2021, 268: 128843. doi: 10.1016/j.chemosphere.2020.128843
|
[29] |
DeLOID G M, WANG Y L, KAPRONEZAI K, et al. An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials[J]. Particle and Fibre Toxicology, 2017, 14(1): 40. doi: 10.1186/s12989-017-0221-5
|
[30] |
GO M R, BAE S H, KIM H J, et al. Interactions between food additive silica nanoparticles and food matrices[J]. Frontiers in Microbiology, 2017, 8: 1013. doi: 10.3389/fmicb.2017.01013
|
[31] |
ZHANG Y Y, PIGNATELLO J J, TAO S, et al. Bioaccessibility of PAHs in fuel soot assessed by an in vitro digestive model with absorptive sink: Effect of food ingestion[J]. Environmental Science & Technology, 2015, 49(24): 14641-14648.
|
[32] |
KÄSTNER C, LICHTENSTEIN D, LAMPEN A, et al. Monitoring the fate of small silver nanoparticles during artificial digestion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 526: 76-81.
|
[33] |
WALCZAK A P, FOKKINK R, PETERS R, et al. Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model[J]. Nanotoxicology, 2013, 7(7): 1198-1210. doi: 10.3109/17435390.2012.726382
|
[34] |
CAO X Q, HAN Y H, LI F, et al. Impact of protein-nanoparticle interactions on gastrointestinal fate of ingested nanoparticles: Not just simple protein Corona effects[J]. NanoImpact, 2019, 13: 37-43. doi: 10.1016/j.impact.2018.12.002
|
[35] |
van AKEN G A. Relating food emulsion structure and composition to the way it is processed in the gastrointestinal tract and physiological responses: What are the opportunities?[J]. Food Biophysics, 2010, 5(4): 258-283. doi: 10.1007/s11483-010-9160-5
|
[36] |
DEGEN L P, PHILLIPS S F. Variability of gastrointestinal transit in healthy women and men[J]. Gut, 1996, 39(2): 299-305. doi: 10.1136/gut.39.2.299
|