[1] 吴颖娟, 王龙, 李志梅, 等. 新污染物以及其在水环境中的检测技术综述[J]. 广东化工, 2024, 51(16): 128-131,147. doi: 10.3969/j.issn.1007-1865.2024.016.041 WU Y J, WANG L, LI Z M, et al. Review of New Pollutants and Detection of New Pollutants in Water[J]. Guangdong Chemical Industry, 2024, 51(16): 128-131,147 (in Chinese). doi: 10.3969/j.issn.1007-1865.2024.016.041
[2] 李上, 李雁宾. 水环境优控污染物筛选研究进展[J]. 环境化学, 2024, 43(6): 1966-1979. doi: 10.7524/j.issn.0254-6108.2023120604 LI S, LI Y B. Research progress on screening priority pollutants in aquatic environments[J]. Environmental Chemistry[J]. Environmental Chemistry, 2024, 43(6): 1966-1979 (in Chinese). doi: 10.7524/j.issn.0254-6108.2023120604
[3] 生态环境部. 《新污染物生态环境监测标准体系表(2024年版)》[S]. 北京: 中国标准出版社, 2024. Ministry of Ecology and Environment. Table of New Pollutant Ecological Environment Monitoring Standard System (2024 edition) [S]. Beijing: Standards Press of China, 2024 (in Chinese).
[4] 刘悦, 王惠琴, 张雨苗, 等. 表面增强拉曼光谱技术在水环境污染物检测中的研究进展[J]. 环境化学, 2025, 44(3): 217-228. doi: 10.7524/j.issn.0254-6108.2014.02.020 LIU Y, WANG H Q, ZHANG Y M, et al. Research progress of surface-enhanced Raman spectroscopy in the detection of water environmental pollutants[J]. Environmental Chemistry, 2025, 44(3): 217-228 (in Chinese). doi: 10.7524/j.issn.0254-6108.2014.02.020
[5] 高歌, 张文晴, 魏歆倪, 等. 新型优先管控污染物筛选研究进展[J]. 中国环境科学, 2024, 44(11): 6472-6483. GAO G, ZHANG W Q, WEI X N, et al. Research Progress on Screening of Emerging Priority Controlled Contaminants[J]. China Environmental Science,2024, 44(11): 6472-6483 (in Chinese).
[6] 中共中央国务院. 《新污染物治理行动方案》[EB/OL]. (2022-05-04) [2024-10-20] General Office of the State Council. Action programme on emerging contaminants [EB/OL]. (2022-05-04) [2024-10-20]
[7] 钱慧敏, 刘艳娜, 姚林林, 等. 非靶标技术在新污染物识别中的应用[J]. 环境化学, 2024, 43(2): 363-376. doi: 10.7524/j.issn.0254-6108.2023021603 QIAN H M, LIU Y N, YAO L L, et al. Recent advances in nontarget discovery of emerging pollutants in the environment[J]. Environmental Chemistry, 2024, 43(2): 363-376 (in Chinese). doi: 10.7524/j.issn.0254-6108.2023021603
[8] 王燕飞, 蒋京呈, 林军. 新污染物的调查监测需求分析[J]. 生态毒理学报, 2023, 18(2): 23-32. doi: 10.7524/AJE.1673-5897.20221108003 WANG Y F, JIANG J C, LIN J. Analysis on investigation and monitoring requirements of new pollutants[J]. Asian Journal of Ecotoxicology, 2023, 18(2): 23-32 (in Chinese). doi: 10.7524/AJE.1673-5897.20221108003
[9] 张桂成, 孙军. 渤海环境污染现状及研究进展[J]. 环境化学, 2023, 42(3): 918-930. doi: 10.7524/j.issn.0254-6108.2022101805 ZHANG G C, SUN J. State of environmental pollution in the Bohai Sea, China: A review[J]. Environmental Chemistry, 2023, 42(3): 918-930 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022101805
[10] 何晓杰, 李菊英. 环境中微/纳塑料的定量追踪与检测技术研究进展[J]. 分析测试学报, 2024, 43(8): 1135-1143. doi: 10.12452/j.fxcsxb.24053094 HE X J, LI J Y. Recent advances in quantitative tracking and detection technologies for micro/nano plastics in the environment[J]. Journal of Instrumental Analysis, 2024, 43(8): 1135-1143 (in Chinese). doi: 10.12452/j.fxcsxb.24053094
[11] 赵淑莉, 陈少坤, 于秀豪, 等. 美丽中国建设过程中重点关注的新污染物监测研究[J]. 中国环境科学, 2024, 44(8): 4576-4587. doi: 10.3969/j.issn.1000-6923.2024.08.042 ZHAO S L, CHEN S K, YU X H, et al. Study on monitoring widespread concerned emerging contaminants under the construction of the Beautiful China[J]. China Environmental Science, 2024, 44(8): 4576-4587 (in Chinese). doi: 10.3969/j.issn.1000-6923.2024.08.042
[12] 张秦铭, 和莹, 王蕾, 等. 液相微萃取技术在环境水体新污染物检测中的研究进展[J]. 中国环境科学, 2024, 44(12): 6949-6961. ZHANG Q M, HE Y, WANG L, et al. Research Progress of Liquid Phase Microextraction in Analysis of New Pollutants in Environmental Water[J]. China Environmental Science, 2024,44(12): 6949-6961 (in Chinese ).
[13] LI C Y, LV S W, YANG L, et al. Facile preparation of uniform-sized covalent organic framework nanoflowers as versatile sample-pretreatment platforms for sensitive and specific determination of hazardous substances[J]. Journal of Hazardous Materials, 2022, 438: 129566. doi: 10.1016/j.jhazmat.2022.129566
[14] ZHENG J, KUANG Y X, ZHOU S X, et al. Latest improvements and expanding applications of solid-phase microextraction[J]. Analytical Chemistry, 2023, 95(1): 218-237. doi: 10.1021/acs.analchem.2c03246
[15] ARTHUR CL, PAWLISZYN J. Solid-Phase microextraction with thermal-desorption using fused-silica optical fibers[J]. Analytical Chemistry, 1990, 10,62(19): 2145-2148.
[16] LORD H, PAWLISZYN J. Evolution of solid-phase microextraction technology[J]. Journal of Chromatography A, 2000, 885(1/2): 153-193.
[17] PIRI-MOGHADAM H, ALAM M N, PAWLISZYN J. Review of geometries and coating materials in solid phase microextraction: Opportunities, limitations, and future perspectives[J]. Analytica Chimica Acta, 2017, 984: 42-65. doi: 10.1016/j.aca.2017.05.035
[18] HASEGAWA T. Physicochemical nature of perfluoroalkyl compounds induced by fluorine[J]. The Chemical Record, 2017, 17(10): 903-917. doi: 10.1002/tcr.201700018
[19] XU B L, LIU F, Brookes P C, et al. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter[J]. Environmental Pollution, 2018, 240: 87-94. doi: 10.1016/j.envpol.2018.04.113
[20] LI A J, WANG F B, TAO L, et al. Rapid and simultaneous determination of multiple endocrine-disrupting chemicals and their metabolites in human serum and urine samples[J]. Talanta, 2022, 248: 123639. doi: 10.1016/j.talanta.2022.123639
[21] OUYANG G F, PAWLISZYN J. A critical review in calibration methods for solid-phase microextraction[J]. Analytica Chimica Acta, 2008, 627(2): 184-197. doi: 10.1016/j.aca.2008.08.015
[22] EVANS J D, GARAI B, REINSCH H, et al. Metal–organic frameworks in Germany: From synthesis to function[J]. Coordination Chemistry Reviews, 2019, 380: 378-418. doi: 10.1016/j.ccr.2018.10.002
[23] ZHENG J, CHEN L Y, KUANG Y X, et al. Universal strategy for metal-organic framework growth: From cascading-functional films to MOF-on-MOFs[J]. Small, 2024, 20(34): e2307976. doi: 10.1002/smll.202307976
[24] 徐寅祺, 顾政, 陶海升. MOFs表面修饰的电化学传感器在酚类污染物检测中的应用综述[J]. 环境化学, 2022, 41(9): 3094-3105. doi: 10.7524/j.issn.0254-6108.2021051602 XU Y Q, GU Z, TAO H S. Review of sensors based on MOFs-modified on the surface of bare electrodes for the detection of phenolic pollutants[J]. Environmental Chemistry, 2022, 41(9): 3094-3105 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021051602
[25] WANG X M, WANG F B, JI H, et al. ZIF-67 derived hollow nanomaterials as solid phase microextraction coatings for rapid capture of polycyclic aromatic hydrocarbons from water samples[J]. Environmental Science: Nano, 2021, 8(3): 675-686. doi: 10.1039/D0EN01176B
[26] WANG D Y, YAO H C, YE J S, et al. Metal-organic frameworks (MOFs): Classification, synthesis, modification, and biomedical applications[J]. Small, 2024: e2404350.
[27] HAYAT A, RAUF S, AL ALWAN B, et al. Recent advance in MOFs and MOF-based composites: Synthesis, properties, and applications[J]. Materials Today Energy, 2024, 41: 101542. doi: 10.1016/j.mtener.2024.101542
[28] KAMALABADI M, MADRAKIAN T, AFKHAMI A, et al. Crystal violet-modified HKUST-1 framework with improved hydrostability as an efficient adsorbent for direct solid-phase microextraction[J]. Microchimica Acta, 2021, 188(9): 305. doi: 10.1007/s00604-021-04966-z
[29] ROCÍO-BAUTISTA P, PACHECO-FERNÁNDEZ I, PASÁN J, et al. Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings?- A review[J]. Analytica Chimica Acta, 2016, 939: 26-41. doi: 10.1016/j.aca.2016.07.047
[30] GONG X Y, XU L Y, KOU X X, et al. Amino-functionalized metal–organic frameworks for efficient solid-phase microextraction of perfluoroalkyl acids in environmental water[J]. Microchemical Journal, 2022, 179: 107661. doi: 10.1016/j.microc.2022.107661
[31] MONDAL S, XU J Q, CHEN G S, et al. Solid-phase microextraction of antibiotics from fish muscle by using MIL-101(Cr)NH2-polyacrylonitrile fiber and their identification by liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta, 2019, 1047: 62-70. doi: 10.1016/j.aca.2018.09.060
[32] LAN H Z, PAN D D, SUN Y Y, et al. Thin metal organic frameworks coatings by cathodic electrodeposition for solid-phase microextraction and analysis of trace exogenous estrogens in milk[J]. Analytica Chimica Acta, 2016, 937: 53-60. doi: 10.1016/j.aca.2016.07.041
[33] LI N, DU J J, WU D, et al. Recent advances in facile synthesis and applications of covalent organic framework materials as superior adsorbents in sample pretreatment[J]. TrAC Trends in Analytical Chemistry, 2018, 108: 154-166. doi: 10.1016/j.trac.2018.08.025
[34] ZHOU S X, KUANG Y X, SHI Y R, et al. Modulated covalent organic frameworks with higher specific surface area for the ultrasensitive detection of polybrominated biphenyls[J]. Chemical Engineering Journal, 2023, 453: 139743. doi: 10.1016/j.cej.2022.139743
[35] FENG J J, FENG J Q, JI X P, et al. Recent advances of covalent organic frameworks for solid-phase microextraction[J]. TrAC Trends in Analytical Chemistry, 2021, 137: 116208. doi: 10.1016/j.trac.2021.116208
[36] JI W H, GUO Y S, XIE H M, et al. Rapid microwave synthesis of dioxin-linked covalent organic framework for efficient micro-extraction of perfluorinated alkyl substances from water[J]. Journal of Hazardous Materials, 2020, 397: 122793. doi: 10.1016/j.jhazmat.2020.122793
[37] GUO J X, QIAN H L, ZHAO X, et al. In situ room-temperature fabrication of a covalent organic framework and its bonded fiber for solid-phase microextraction of polychlorinated biphenyls in aquatic products[J]. Journal of Materials Chemistry A, 2019, 7(21): 13249-13255. doi: 10.1039/C9TA02974E
[38] 刘煦, 杨田, 雷秋霞, 等. 全氟和多氟烷基化合物去除进展[J]. 环境化学, 2024, 43(8): 2517-2538. LIU X, YANG T, LEI Q X, et al. Advances in removal of per- and polyfluoroalkyl substances[J]. Environmental Chemistry, 2024, 43(8): 2517-2538 (in Chinese).
[39] HUANG J L, SHI Y R, HUANG G, et al. Facile synthesis of a fluorinated-squaramide covalent organic framework for the highly efficient and broad-spectrum removal of per- and polyfluoroalkyl pollutants[J]. Angewandte Chemie (International Ed), 2022, 61(31): e202206749. doi: 10.1002/anie.202206749
[40] SONG C C, ZHENG J, ZHANG Q D, et al. Multifunctionalized covalent organic frameworks for broad-spectrum extraction and ultrasensitive analysis of per- and polyfluoroalkyl substances[J]. Analytical Chemistry, 2023, 95(19): 7770-7778. doi: 10.1021/acs.analchem.3c01137
[41] LI J, WANG Z, LI J Q, et al. Novel N-riched covalent organic framework for solid-phase microextraction of organochlorine pesticides in vegetable and fruit samples[J]. Food Chemistry, 2022, 388: 133007. doi: 10.1016/j.foodchem.2022.133007
[42] SHAHHOSEINI F, AZIZI A, BOTTARO C S. A critical evaluation of molecularly imprinted polymer (MIP) coatings in solid phase microextraction devices[J]. TrAC Trends in Analytical Chemistry, 2022, 156: 116695. doi: 10.1016/j.trac.2022.116695
[43] BELBRUNO J J. Molecularly imprinted polymers[J]. Chemical Reviews, 2019, 119(1): 94-119. doi: 10.1021/acs.chemrev.8b00171
[44] 叶洪, 赖浩宇, 高博, 等. 分子印迹固相微萃取-超高效液相色谱串联质谱法检测肉牛体内三种苯二氮类药物[J]. 农产品加工, 2024(11): 70-76. YE H, LAI H Y, GAO B, et al. Determination of three benzodiazepines in beef cattles by molecularly imprinted polymers-solid phase micro extraction: Ultra performance liquid chromatography-tandem mass spectrometry[J]. Farm Products Processing, 2024(11): 70-76 (in Chinese).
[45] ZHOU Q Q, DUAN Y L, XU Z G, et al. A molecularly imprinted fiber array solid-phase microextraction strategy for simultaneous detection of multiple estrogens[J]. Journal of Materials Chemistry. B, 2023, 11(22): 4991-4999. doi: 10.1039/D3TB00555K
[46] XU S F, ZHANG X L, XU Z G, et al. Exposure and risk assessment of phthalates in environmental water using a three-template molecularly imprinted fiber array strategy[J]. Journal of Hazardous Materials, 2024, 461: 132491. doi: 10.1016/j.jhazmat.2023.132491
[47] ZHENG J, CHEN L Y, XIE X T, et al. Polydopamine modified ordered mesoporous carbon for synergistic enhancement of enrichment efficiency and mass transfer towards phenols[J]. Analytica Chimica Acta, 2020, 1095: 109-117. doi: 10.1016/j.aca.2019.10.036
[48] KUANG Y X, XIE X T, ZHOU S X, et al. Customized oxygen-rich biochar with ultrahigh microporosity for ideal solid phase microextraction of substituted benzenes[J]. Science of the Total Environment, 2023, 870: 161840. doi: 10.1016/j.scitotenv.2023.161840
[49] KHATAEI M M, YAMINI Y, GHAEMMAGHAMI M. Reduced graphene-decorated covalent organic framework as a novel coating for solid-phase microextraction of phthalate esters coupled to gas chromatography-mass spectrometry[J]. Microchimica Acta, 2020, 187(4): 256. doi: 10.1007/s00604-020-4224-9
[50] ZANG X H, CHANG Q Y, PANG Y C, et al. Solid-phase microextraction of eleven organochlorine pesticides from fruit and vegetable samples by a coated fiber with boron nitride modified multiwalled carbon nanotubes[J]. Food Chemistry, 2021, 359: 129984. doi: 10.1016/j.foodchem.2021.129984
[51] LI H M, DONG P L, LONG A Y, et al. Cellulose nanocrystals induced loose and porous graphite phase carbon nitride/porous carbon composites for capturing and determining of organochlorine pesticides from water and fruit juice by solid-phase microextraction[J]. Polymers, 2023, 15(9): 2218. doi: 10.3390/polym15092218
[52] PATINHA D J S, SILVESTRE A J D, MARRUCHO I M. Poly(ionic liquids) in solid phase microextraction: Recent advances and perspectives[J]. Progress in Polymer Science, 2019, 98: 101148. doi: 10.1016/j.progpolymsci.2019.101148
[53] CUI M Y, QIU J X, LI Z H, et al. An etched stainless steel wire/ionic liquid-solid phase microextraction technique for the determination of alkylphenols in river water[J]. Talanta, 2015, 132: 564-571. doi: 10.1016/j.talanta.2014.09.012
[54] DU J, ZHAO F Q, ZENG B Z. Preparation of functionalized graphene and ionic liquid Co-doped polypyrrole solid phase microextraction coating for the detection of benzoates preservatives[J]. Talanta, 2021, 228: 122231. doi: 10.1016/j.talanta.2021.122231
[55] NASCIMENTO L E S, THAPA B, DA SILVA OLIVEIRA W, et al. Multivariate optimization for extraction of 2-methylimidazole and 4-methylimidazole from açaí-based food products using polymeric ionic liquid-based sorbent coatings in solid-phase microextraction coupled to gas chromatography–mass spectrometry[J]. Food Chemistry, 2024, 444: 138593. doi: 10.1016/j.foodchem.2024.138593
[56] AYALA-CABRERA J F, CONTRERAS-LLIN A, MOYANO E, et al. A novel methodology for the determination of neutral perfluoroalkyl and polyfluoroalkyl substances in water by gas chromatography-atmospheric pressure photoionisation-high resolution mass spectrometry[J]. Analytica Chimica Acta, 2020, 1100: 97-106. doi: 10.1016/j.aca.2019.12.004
[57] SONG X, WANG R Y, WANG X, et al. An amine-functionalized olefin-linked covalent organic framework used for the solid-phase microextraction of legacy and emerging per- and polyfluoroalkyl substances in fish[J]. Journal of Hazardous Materials, 2022, 423: 127226. doi: 10.1016/j.jhazmat.2021.127226
[58] ZHONG C F, DENG J W, YANG Y Y, et al. Rapid and sensitive determination of legacy and emerging per- and poly-fluoroalkyl substances with solid-phase microextraction probe coupled with mass spectrometry[J]. Talanta, 2024, 276: 126233. doi: 10.1016/j.talanta.2024.126233
[59] HOU Y J, DENG J W, HE K L, et al. Covalent organic frameworks-based solid-phase microextraction probe for rapid and ultrasensitive analysis of trace per- and polyfluoroalkyl substances using mass spectrometry[J]. Analytical Chemistry, 2020, 92(15): 10213-10217. doi: 10.1021/acs.analchem.0c01829
[60] OUYANG S, LIU G F, PENG S, et al. Superficially capped amino metal-organic framework for efficient solid-phase microextraction of perfluorinated alkyl substances[J]. Journal of Chromatography A, 2022, 1669: 462959. doi: 10.1016/j.chroma.2022.462959
[61] ALSHEHRI M M, ALI OULADSMANE M, ALI AOUAK T, et al. Determination of phthalates in bottled waters using solid-phase microextraction and gas chromatography tandem mass spectrometry[J]. Chemosphere, 2022, 304: 135214. doi: 10.1016/j.chemosphere.2022.135214
[62] LIU S, LI Y H, ZANG X H, et al. Phenylenediboronic acid-intercalated MXene-based adsorbent for solid-phase microextraction of phthalate esters in jams[J]. Microchemical Journal, 2024, 200: 110446. doi: 10.1016/j.microc.2024.110446
[63] SONG X L, LIU Y Q, HE F Y, et al. Facile fabrication of carbon nanotube hollow microspheres as a fiber coating for ultrasensitive solid-phase microextraction of phthalic acid esters in tea beverages[J]. Analytical Methods, 2024, 16(3): 420-426. doi: 10.1039/D3AY01943H
[64] 张莹, 赵金凤, 费哲奇, 等. 共价有机框架衍生多孔碳固相微萃取纤维结合气相色谱法测定水样中的邻苯二甲酸酯[J]. 高等学校化学学报, 2024, 45(8): 34-43. doi: 10.7503/cjcu20240137 ZHANG Y, ZHAO J F, FEI Z Q, et al. Determination of phthalates in water by covalent organic framework derived porous carbon solid phase microextraction fiber combined with gas chromatography[J]. Chemical Journal of Chinese Universities, 2024, 45(8): 34-43 (in Chinese). doi: 10.7503/cjcu20240137
[65] WANG Z, ZHANG X Y, YANG Q, et al. Covalent triazine-based frameworks for efficient solid-phase microextraction of phthalic acid esters from food-contacted plastics[J]. Journal of Chromatography A, 2022, 1681: 463474. doi: 10.1016/j.chroma.2022.463474
[66] XU S R, LI H M, XIAO L, et al. Quantitative determination of poly(methyl methacrylate) micro/nanoplastics by cooling-assisted solid-phase microextraction coupled to gas chromatography-mass spectrometry: Theoretical and experimental insights[J]. Analytical Chemistry, 2024, 96(5): 2227-2235. doi: 10.1021/acs.analchem.3c05316
[67] XU S R, LI H M, XIAO L, et al. Monitoring Poly(methyl methacrylate) and Polyvinyl Dichloride Micro/Nanoplastics in Water by Direct Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry[J]. Analytical Chemistry, 2024, 96(26): 10772-10779. doi: 10.1021/acs.analchem.4c01900
[68] MU M Y, ZHU S P, GAO Y M, et al. Efficient enrichment and sensitive detection of polychlorinated biphenyls using nanoflower MIL-on-UiO as solid-phase microextraction fiber coating[J]. Food Chemistry, 2024, 459: 140276. doi: 10.1016/j.foodchem.2024.140276
[69] YU J Y, JIANG X, LU Z H, et al. In situ self-assembly of three-dimensional porous graphene film on zinc fiber for solid-phase microextraction of polychlorinated biphenyls[J]. Analytical and Bioanalytical Chemistry, 2022, 414(18): 5585-5594. doi: 10.1007/s00216-022-04003-9
[70] SU L S, ZHANG N, TANG J P, et al. In-situ fabrication of a chlorine-functionalized covalent organic framework coating for solid-phase microextraction of polychlorinated biphenyls in surface water[J]. Analytica Chimica Acta, 2021, 1186: 339120. doi: 10.1016/j.aca.2021.339120
[71] ZHU S P, LOU X J, ZHU J W, et al. Ultra-stable Co3O4/NiCo2O4 double-shelled hollow nanocages as headspace solid-phase microextraction coating for enhanced capture of polychlorinated biphenyls[J]. Chemical Engineering Journal, 2024, 488: 150876. doi: 10.1016/j.cej.2024.150876
[72] XIN J H, XU G J, ZHOU Y R, et al. Ketoenamine covalent organic framework coating for efficient solid-phase microextraction of trace organochlorine pesticides[J]. Journal of Agricultural and Food Chemistry, 2021, 69(28): 8008-8016. doi: 10.1021/acs.jafc.1c02895
[73] GONG X Y, XU L Y, HUANG S M, et al. Application of the NU-1000 coated SPME fiber on analysis of trace organochlorine pesticides in water[J]. Analytica Chimica Acta, 2022, 1218: 339982. doi: 10.1016/j.aca.2022.339982
[74] DONG Z M, CHENG L, SUN T, et al. Carbon aerogel as a solid-phase microextraction fiber coating for the extraction and detection of trace tetracycline residues in food by coupling with high-performance liquid chromatography[J]. Analytical Methods, 2021, 13(3): 381-389. doi: 10.1039/D0AY02140G
[75] DONG Z M, GUO Y Q, QIN L M, et al. Organic aerogels embedded in triple-shelled hollow MIL-101 as fiber coating for optimizing the solid-phase microextraction performances of tetracyclines in egg and milk samples[J]. Microchemical Journal, 2024, 199: 110005. doi: 10.1016/j.microc.2024.110005
[76] DONG Z M, CHENG L, SUN T, et al. Carboxylation modified meso-porous carbon aerogel templated by ionic liquid for solid-phase microextraction of trace tetracyclines residues using HPLC with UV detection[J]. Microchimica Acta, 2021, 188(2): 43. doi: 10.1007/s00604-021-04707-2
[77] NIAZIPOUR S, RAOOF J B, GHANI M. Template-directed synthesis of three-dimensional metal organic framework 199-derived highly porous copper nano-foam fiber for solid-phase microextraction of some antibiotics prior to their quantification by High performance liquid chromatography[J]. Journal of Chromatography A, 2021, 1660: 462677. doi: 10.1016/j.chroma.2021.462677
[78] LIU Y H, YANG Q X, CHEN X T, et al. Sensitive analysis of trace macrolide antibiotics in complex food samples by ambient mass spectrometry with molecularly imprinted polymer-coated wooden tips[J]. Talanta, 2019, 204: 238-247. doi: 10.1016/j.talanta.2019.05.102
[79] DENG J W, YU T T, YAO Y, et al. Surface-coated wooden-tip electrospray ionization mass spectrometry for determination of trace fluoroquinolone and macrolide antibiotics in water[J]. Analytica Chimica Acta, 2017, 954: 52-59. doi: 10.1016/j.aca.2016.12.008
[80] LIAO T, JIA J, TONG K, et al. Determination of synthetic estrogens in milk by a novel hyper-crosslinked polymer SPME coupled with HPLC-MS[J]. Microchemical Journal, 2022, 181: 107700. doi: 10.1016/j.microc.2022.107700
[81] GAO W, TIAN Y, LIU H, et al. Ultrasensitive determination of tetrabromobisphenol A by covalent organic framework based solid phase microextraction coupled with constant flow desorption ionization mass spectrometry[J]. Analytical Chemistry, 2019, 91(1): 772-775. doi: 10.1021/acs.analchem.8b04884
[82] YU Y J, ZHU X H, ZHU J Y, et al. Rapid and simultaneous analysis of tetrabromobisphenol A and hexabromocyclododecane in water by direct immersion solid phase microextraction: Uniform design to explore factors[J]. Ecotoxicology and Environmental Safety, 2019, 176: 364-369. doi: 10.1016/j.ecoenv.2019.03.104
[83] LI S H, BIAN L L, YANG C X, et al. Migration study of phenolic endocrine disruptors from pacifiers to saliva simulant by solid phase microextraction with amino-functionalized microporous organic network coated fiber[J]. Journal of Hazardous Materials, 2022, 438: 129505. doi: 10.1016/j.jhazmat.2022.129505
[84] OLCER Y A, TASCON M, EROGLU A E, et al. Thin film microextraction: Towards faster and more sensitive microextraction[J]. TrAC Trends in Analytical Chemistry, 2019, 113: 93-101. doi: 10.1016/j.trac.2019.01.022
[85] SEIDI S, TAJIK M, BAHARFAR M, et al. Micro solid-phase extraction (pipette tip and spin column) and thin film solid-phase microextraction: Miniaturized concepts for chromatographic analysis[J]. TrAC Trends in Analytical Chemistry, 2019, 118: 810-827. doi: 10.1016/j.trac.2019.06.036
[86] CHEN X L, LIU S Q, JIANG R F, et al. Rapid detection and speciation of illicit drugs via a thin-film microextraction approach for wastewater-based epidemiology study[J]. Science of the Total Environment, 2022, 842: 156888. doi: 10.1016/j.scitotenv.2022.156888
[87] RICKERT D A, SINGH V, THIRUKUMARAN M, et al. Comprehensive analysis of multiresidue pesticides from process water obtained from wastewater treatment facilities using solid-phase microextraction[J]. Environmental Science & Technology, 2020, 54(24): 15789-15799.
[88] SERESHTI H, MOUSAVI RAD N. Bacterial cellulose-supported dual-layered nanofibrous adsorbent for thin-film micro-solid-phase extraction of antibiotics in municipal wastewaters[J]. Talanta, 2024, 276: 126198. doi: 10.1016/j.talanta.2024.126198
[89] KATAOKA H. In-tube solid-phase microextraction: Current trends and future perspectives[J]. Journal of Chromatography A, 2021, 1636: 461787. doi: 10.1016/j.chroma.2020.461787
[90] COSTA QUEIROZ M E, DONIZETI DE SOUZA I, MARCHIONI C. Current advances and applications of in-tube solid-phase microextraction[J]. TrAC Trends in Analytical Chemistry, 2019, 111: 261-278. doi: 10.1016/j.trac.2018.12.018
[91] ZHANG J H, CHEN Y H, NI M L, et al. A novel halloysite nanotubes-based hybrid monolith for in-tube solid-phase microextraction of polar cationic pesticides[J]. Food Chemistry, 2024, 458: 140205. doi: 10.1016/j.foodchem.2024.140205
[92] SUN M X, FENG J J, FENG J Q, et al. Biochar nanosphere- and covalent organic framework nanosphere-functionalized titanium dioxide nanorod arrays on carbon fibers for solid-phase microextraction of organic pollutants[J]. Chemical Engineering Journal, 2022, 433: 133645. doi: 10.1016/j.cej.2021.133645
[93] PANG J L, CHEN H Z, GUO H G, et al. High-sensitive determination of tetracycline antibiotics adsorbed on microplastics in mariculture water using pre-COF/monolith composite-based in-tube solid phase microextraction on-line coupled to HPLC-MS/MS[J]. Journal of Hazardous Materials, 2024, 469: 133768. doi: 10.1016/j.jhazmat.2024.133768
[94] MEI M, HUANG X J, LUO Q, et al. Magnetism-enhanced monolith-based in-tube solid phase microextraction[J]. Analytical Chemistry, 2016, 88(3): 1900-1907. doi: 10.1021/acs.analchem.5b04328
[95] CHENG L D, PAN S H, DING C Y, et al. Dispersive solid-phase microextraction with graphene oxide based molecularly imprinted polymers for determining bis(2-ethylhexyl) phthalate in environmental water[J]. Journal of Chromatography A, 2017, 1511: 85-91. doi: 10.1016/j.chroma.2017.07.012
[96] HU Y X, SU L Y, WANG S, et al. A ratiometric electrochemiluminescent tetracycline assay based on the combined use of carbon nanodots, Ru(bpy)32+, and magnetic solid phase microextraction. Microchimica Acta, 2019, 186(8): 512.
[97] VIñAS P, PASTOR-BELDA M, TORRES A, et al. Use of oleic-acid functionalized nanoparticles for the magnetic solid-phase microextraction of alkylphenols in fruit juices using liquid chromatography-tandem mass spectrometry[J]. Talanta, 2016, 151: 217-223. doi: 10.1016/j.talanta.2016.01.039
[98] GHORBANI M, AGHAMOHAMMADHASSAN M, CHAMSAZ M, et al. Dispersive solid phase microextraction[J]. TrAC Trends in Analytical Chemistry, 2019, 118: 793-809. doi: 10.1016/j.trac.2019.07.012
[99] HUANG Y M, LU M, CHEN L, et al. Development of solid-phase microextraction with multiple interactions-based monolithic fibers for the sensitive determination of perfluoroalkyl phosphonic acids in water and vegetable samples[J]. Talanta, 2020, 206: 120198. doi: 10.1016/j.talanta.2019.120198
[100] CHEN H, WANG J, ZHANG W M, et al. In situ rapid electrochemical fabrication of porphyrin-based covalent organic frameworks: Novel fibers for electro-enhanced solid-phase microextraction[J]. ACS Applied Materials & Interfaces, 2023, 15(9): 12453-12461.
[101] POURSHAMSI T, AMRI F, ABNIKI M. A comprehensive review on application of the syringe in liquid- and solid-phase microextraction methods[J]. Journal of the Iranian Chemical Society, 2021, 18(2): 245-264. doi: 10.1007/s13738-020-02025-7
[102] DA SILVA L F, VARGAS MEDINA D A, LANçAS F M. Automated needle-sleeve based online hyphenation of solid-phase microextraction and liquid chromatography[J]. Talanta, 2021, 221: 121608. doi: 10.1016/j.talanta.2020.121608