[1] 吕鹏翼, 马文凯, 魏渤惠, 等. 改性电炉钢渣-多元LDHs对亚甲基蓝染的料脱色性能[J]. 环境工程学报, 2022, 16(3): 915-925. doi: 10.12030/j.cjee.202111077
[2] 王轩栋, 施小宁, 杨秀娟. Pickering乳液模板多孔WG-g-PNaA水凝胶去除水体中的亚甲基蓝[J]. 环境工程学报, 2020, 14(12): 3270-3279. doi: 10.12030/j.cjee.201912089
[3] 王亚男, 李伟, 贾欠欠, 等. 三氧化钨的生物合成及其对亚甲基蓝的光降解[J]. 环境工程学报, 2018, 12(12): 3297-3307. doi: 10.12030/j.cjee.201806064
[4] 邹成龙, 徐志威, 聂发辉, 等. Fe3O4@SA/GO凝胶球的制备及对亚甲基蓝的吸附性能[J]. 环境工程学报, 2022, 16(1): 121-132. doi: 10.12030/j.cjee.202109010
[5] 陈垂汉, 孙建洋, 李莹, 等. 印染污泥制备活性炭对亚甲基蓝的吸附[J]. 环境工程学报, 2018, 12(7): 1872-1878. doi: 10.12030/j.cjee.201710068
[6] 许艺文. 向日葵叶制备绿色纳米铁复合材料对水中U(Ⅵ)的去除机制[D]. 衡阳: 南华大学, 2022.
[7] 邓真宁. 向日葵绿色制备纳米铁过程中还原成分的作用机理研究[D]. 衡阳: 南华大学, 2020.
[8] 姚平. 植物多酚纳米银的绿色制备及其对合成染料的催化降解[D]. 苏州: 苏州大学, 2019.
[9] SLIJEPCEVIC N, RADENOVIC D, BELJIN J, et al. A novel co-contaminated sediment treatment approach: Quercus petraea leaf-extracted nZVI supported on native clay and biochar for potentially toxic elements and PAHs removal[J]. Journal of Soils and Sediments, 2024, 24: 509-524. doi: 10.1007/s11368-023-03682-w
[10] ABDELKRIM S, MOKHTAR A, DJELAD A, et al. Insights into catalytic reduction of dyes catalyzed by nanocomposite beads Alginate@Fe3O4: Experimental and DFT study on the mechanism of reduction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129595. doi: 10.1016/j.colsurfa.2022.129595
[11] YAYAYURUK A, YAYAYURUK O, TUKENMEZ E, et al. Application of polycarboxylic acid brushes on polystyrene-divinylbenzene microbeads for the removal of Lead from water[J]. Clean-Soil Air Water, 2021, 49: 2000215. doi: 10.1002/clen.202000215
[12] 谭国辉, 王泽行, 王汝鑫, 等. 紫叶李叶片总多酚提取工艺优化及抗氧化活性研究[J]. 现代园艺, 2022, 45(9): 17-20. doi: 10.3969/j.issn.1006-4958.2022.09.007
[13] RONG K, LI X, YANG Q, et al. Removal of aqueous vanadium(V) by green synthesized iron nanoparticles supported on corn straw biochar[J]. Journal of Industrial and Engineering Chemistry, 2023, 120: 170-181. doi: 10.1016/j.jiec.2022.12.023
[14] RONG K, WANG J, LI X, et al. Removal of Cr(VI) by iron nanoparticles synthesized by a novel green method using Yali pear peels extracts: optimization, reactivity, and mechanism[J]. Biomass Conversion and Biorefinery, 2024, 14: 4355-4368. doi: 10.1007/s13399-022-02464-7
[15] 辛海艳. 纳米铁催化剂的绿色合成及其催化应用[D]. 泉州: 华侨大学, 2017.
[16] 丁敬林. 负载纳米零价铁的生物炭活化过硫酸盐去除雌二醇的研究[D]. 长沙: 湖南大学, 2021.
[17] 濮梦婕. Fe/C基非均相催化材料活化过硫酸钠降解水中典型有机污染物的研究[D]. 广州: 华南理工大学, 2018.
[18] BILICI Z, ISIK Z, AKTAS Y, et al. Photocatalytic effect of zinc oxide and magnetite entrapped calcium alginate beads for azo dye and hexavalent chromium removal from solutions [J]. Journal of Water Process Engineering. 2019, 31, 100826.
[19] 许培俊, 冯鑫, 王临江, 等. 溶剂热法制备羧基化超顺磁性Fe3O4纳米颗粒及其磁致变色研究[J]. 功能材料, 2021, 52(1): 1026-1032.
[20] 闫奇, 郑乾送, 周江敏, 等. 生物炭负载羧甲基纤维素钠稳定化纳米铁对水中六价铬的去除[J]. 环境工程学报, 2020, 14(3): 579-587. doi: 10.12030/j.cjee.201905066
[21] 刘沁文, 丁爱中, 梁信, 等. 桉树生物炭负载绿色合成纳米零价铁去除水中Cr(Ⅵ)[J]. 环境科学, 2022, 43(12): 5657-5666.
[22] WAQAS M, ABURIAZAIZA A, MIANDAD R, et al. Development of biochar as fuel and catalyst in energy recovery technologies[J]. Journal of Cleaner Production, 2018, 188: 477-488. doi: 10.1016/j.jclepro.2018.04.017
[23] RONG K, Wang J, Zhang Z, et al. Green synthesis of iron nanoparticles using Korla fragrant pear peel extracts for the removal of aqueous Cr(VI)[J]. Ecological Engineering, 2020, 149: 105793. doi: 10.1016/j.ecoleng.2020.105793
[24] CHENG L, JI Y, Liu X. Insights into interfacial interaction mechanism of dyes sorption on a novel hydrochar: Experimental and DFT study[J]. Chemical Engineering Science, 2021, 233: 116432. doi: 10.1016/j.ces.2020.116432
[25] 姚时, 张鸣帅, 李林璇, 等. 茶渣负载纳米四氧化三铁复合材料制备及其对亚甲基蓝的吸附机理[J]. 环境化学, 2018, 37(1): 96-107. doi: 10.7524/j.issn.0254-6108.2017050401
[26] KONCZYK J, KLUZIAK K, KOLODYNSKA D. Adsorption of vanadium (V) ions from the aqueous solutions on different biomass-derived biochars[J]. Journal of Environmental Management, 2022, 313: 114958. doi: 10.1016/j.jenvman.2022.114958
[27] ZHOU A, QIU Z, YANG J, et al. A magnetic chitosan for efficient adsorption of vanadium (V) from aqueous solution[J]. Environmental Science and Pollution Research, 2022, 29(50): 76263-76274. doi: 10.1007/s11356-022-21256-0
[28] 王虹. 凹凸棒石/纳米铁复合材料的制备及去除亚甲基蓝的研究[D]. 成都: 成都理工大学, 2020.
[29] 简浩. 简青霉—生物炭联用去除废水中Cr(Ⅵ)、甲基橙、亚甲基蓝的研究[D]. 长沙: 湖南大学, 2015.
[30] 郭大勇, 吴姗薇, 王旭刚, 等. 南洛河可溶性碳与阴离子含量周年变化及其影响因素分析[J]. 河南科技大学学报(自然科学版), 2020, 41(1): 68-73.
[31] 王小平, 闫春辉. 广西盘阳河水无机阴离子和矿质元素含量分析[J]. 微量元素与健康研究, 2013, 30(6): 47-50.
[32] 胡西旦·格拉吉丁. 离子色谱法在河水阴离子中的应用[J]. 新疆师范大学学报(自然科学版), 2007, 26(4): 65-68.
[33] 何佩霖. 磁性油菜籽荚对水中孔雀石绿与亚甲基蓝的吸附作用及机理[D]. 成都: 成都医学院, 2022.
[34] 杨贵德. 磁性介孔碳复合材料的合成及其在水体污染修复中的应用[D]. 长沙: 湖南大学, 2015.
[35] 吕丹. 硫化纳米零价铁对水中Cr(Ⅵ)和Cd(Ⅱ)的去除性能研究[D]. 杭州: 浙江大学, 2019.
[36] 张德锦. 硫掺杂纳米零价铁-生物炭复合材料强化厌氧还原硝基化合物的研究[D]. 南京: 南京理工大学, 2019.
[37] 程丽. 生物炭负载硫铁化合物的绿色合成及其去除水中铅的研究[D]. 哈尔滨: 东北农业大学, 2020.
[38] 祁宝川, 赵居芳, 陈伟红, 等. 薰衣草提取液绿色合成生物炭负载纳米零价铁去除水中亚甲基蓝的研究[J]. 化工新型材料, 2023, 51(4): 247-54.
[39] 赵志豪, 潘自斌, 陈祖亮. 生物炭负载铁纳米颗粒的制备及其反应活性评估[J]. 当代化工研究, 2024(1): 38-40.
[40] RUBANGAKENE N, ELKADY M, ELWARDANY A, et al. Effective decontamination of methylene blue from aqueous solutions using novel nano-magnetic biochar from green pea peels[J]. Environmental Research, 2023, 220: 115272. doi: 10.1016/j.envres.2023.115272
[41] AHMED M, ZHOU J, NGO H, et al. , Nano-Fe0 immobilized onto functionalized biochar gaining excellent stability during sorption and reduction of chloramphenicol via transforming to reusable magnetic composite[J]. Chemical Engineering Journal, 2017, 322: 571-581. doi: 10.1016/j.cej.2017.04.063
[42] DING W, HABINEZA A, ZENG X, et al. , Adsorption of methylene blue and methyl orange on nano zero-valent iron (nZVI) coated biochar: column adsorption experiments[J]. Desalination and Water Treatment, 2022, 260: 169-178. doi: 10.5004/dwt.2022.28445
[43] GUO D, WU J, FENG D, et al. , Mechanism of efficient magnetic biochar for typical aqueous organic contaminant combined-adsorption removal[J]. Fuel Processing Technology, 2023, 247: 107795. doi: 10.1016/j.fuproc.2023.107795
[44] Guel-NAJAR N, RIOS-HURTADO J, MUZQUIZ-RAMOS E, et al. Magnetic biochar obtained by chemical coprecipitation and pyrolysis of corn cob residues: Characterization and methylene blue adsorption[J]. Materials, 2023, 16: 3127. doi: 10.3390/ma16083127
[45] LI Z, ZHOU M, LIU N, et al. , Engineered biochar derived from lemon peel waste for highly efficient removal of organic pollutants from water [J]. Arabian Journal of chemistey, 16(10), 105158.
[46] PRABAKARAN E, PILLAY K, BRINK H, et al. Hydrothermal synthesis of magnetic-biochar nanocomposite derived from avocado peel and its performance as an adsorbent for the removal of methylene blue from wastewater[J]. Materials Today Sustainability, 2022, 18: 100123. doi: 10.1016/j.mtsust.2022.100123
[47] 吴威, 龚继来, 曾光明, 等. 氧化石墨烯负载纳米零价铁的制备及其对亚甲基蓝的吸附[J]. 化工环保, 2015, 35(4): 426-431. doi: 10.3969/j.issn.1006-1878.2015.04.019
[48] 张杨, 周桃, 叶加权, 等. 尾菜生物质炭/纳米铁的制备及去除水中亚甲基蓝的性能[J]. 化工管理, 2019(7): 89-90. doi: 10.3969/j.issn.1008-4800.2019.07.059
[49] 赵浩然, 陈佳玲, 张文博, 等. 甘蔗渣生物炭对亚甲基蓝的脱除性能[J]. 华南师范大学学报(自然科学版) [J]. 2021, 53(6): 50-60.
[50] XIAO C, HU Y, LI Q, et al. Carbon-doped defect MoS2 co-catalytic Fe3+/peroxymonosulfate process for efficient sulfadiazine degradation: Accelerating Fe3+/Fe2+cycle and 1O2 dominated oxidation[J]. Science of the Total Environment, 2023, 858: 159587. doi: 10.1016/j.scitotenv.2022.159587
[51] WANG D, SUO M, LAI S, et al. Photoinduced acceleration of Fe3+/Fe2+ cycle in heterogeneous FeNi-MOFs to boost peroxodisulfate activation for organic pollutant degradation[J]. Applied Catalysis B-Environmental, 2023, 321: 122054. doi: 10.1016/j.apcatb.2022.122054
[52] ZHANG P, O’CONNOR D, WANG Y, et al. A green biochar/iron oxide composite for methylene blue removal[J]. Journal of Hazardous Materials, 2020, 384: 121286. doi: 10.1016/j.jhazmat.2019.121286
[53] 宋宏娇, 季斌, 杨雨婷, 等. 菠萝皮生物炭负载纳米零价铁去除水中的铬[J]. 科学技术与工程, 2019, 19(13): 342-347. doi: 10.3969/j.issn.1671-1815.2019.13.053
[54] YI Y, TU G, TSANG P, et al. Green synthesis of iron-based nanoparticles from extracts of Nephrolepis auriculata and applications for Cr(VI) removal[J]. Materials Letters, 2019, 234: 388-391. doi: 10.1016/j.matlet.2018.09.137